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Abstract
Background: Recent studies have shown potential in introducing machine learning (ML) algorithms to 
predict outcomes post-percutaneous coronary intervention (PCI).
Aims: We aimed to critically appraise current ML models’ effectiveness as clinical tools to predict outcomes 
post-PCI.
Methods: Searches of four databases were conducted for articles published from the database inception 
date to 29 May 2021. Studies using ML to predict outcomes post-PCI were included. For individual post-
PCI outcomes, measures of diagnostic accuracy were extracted. An adapted checklist comprising existing 
frameworks for new risk markers, diagnostic accuracy, prognostic tools and ML was used to critically 
appraise the included studies along the stages of the translational pathway: development, validation, and 
impact. Quality of training data and methods of dealing with missing data were evaluated.
Results: Twelve cohorts from 11 studies were included with a total of 4,943,425 patients. ML models 
performed with high diagnostic accuracy. However, there are concerns over the development of the ML 
models. Methods of dealing with missing data were problematic. Four studies did not discuss how missing 
data were handled. One study removed patients if any of the predictor variable data points were missing. 
Moreover, at the validation stage, only three studies externally validated the models presented. There could 
be concerns over the applicability of these models. None of the studies discussed the cost-effectiveness of 
implementing the models.
Conclusions: ML models show promise as a useful clinical adjunct to traditional risk stratification scores 
in predicting outcomes post-PCI. However, significant challenges need to be addressed before ML can be 
integrated into clinical practice.
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Abbreviations
AUC area under the curve
LASSO least absolute shrinkage and selection operator
ML machine learning
NPV negative predictive value
PCI percutaneous coronary intervention
PPV positive predictive value

Introduction
Ischaemic heart disease is the greatest cause of mortality and 
loss of disability-adjusted life years worldwide, accounting for 
approximately 7 million deaths and 129 million disability-adjusted 
life years annually1. Percutaneous coronary intervention (PCI) 
is indicated in patients with acute coronary syndrome and has 
been shown to improve quality of life in those on the maximal 
tolerated medical therapy2. Such intervention may be associated 
with complications, such as postprocedural acute kidney injury, 
bleeding, heart failure and others.

Traditional statistical modelling methods have been adopted to 
predict outcomes post-PCI, involving preselecting and transforming 
candidate variables based on prior knowledge, applying hierarchical 
logistic regression to model relationships between variables and 
outcomes, and reducing the number of variables to create the 
final model3. However, this approach is limited, as it assumes 
a linear relationship between the variables and logarithmic odds 
of outcomes, and is weak to collinearity between the variables4. 
Conversely, machine learning (ML) algorithms are free of these 
linear assumptions and have the additional benefit of being able to 
control collinearity by regularisation of hyperparameters5.

ML is a branch of artificial intelligence which uses large 
datasets to produce algorithms with minimal human intervention, 
allowing for automated learning. ML learns from examples in 
training datasets by optimising algorithms according to a loss 
function. Different ML models exist, including adaptive boosting, 
k-nearest neighbours, least absolute shrinkage and selection 
operator (LASSO), random forest, artificial neural network, and 
support vector machine, amongst others.

In an age of precision medicine, ML has demonstrated its 
capabilities in sifting through vast amounts of clinical data and 
reliably predicting outcomes6, guiding clinicians in efficiently 
stratifying patients and making individualised treatment 
decisions7. Several studies have also shown significant potential 
in introducing ML algorithms to predict post-PCI outcomes8,9. 
Nonetheless, other studies have shown no performance benefit 
of ML over traditional statistical methods for clinical prediction 
models10. Hence, we conducted a systematic review to evaluate 
the effectiveness and validity of current ML models as a clinical 
tool to predict outcomes following PCI.

Methods
This systematic review was registered on PROSPERO 
(International prospective register of systematic reviews; 
CRD258014) and was reported according to the Preferred 

Reporting Items for Systematic reviews and Meta-Analyses 
guidelines11. Searches of four databases (PubMed, Embase, 
Cochrane, and Scopus) were conducted for articles published 
from the date of inception up to 29 May 2021. A literature search 
was performed using terms synonymous with “machine learning”, 
“prediction” and “PCI”. The full list of search terms can be found 
in Supplementary Table 1.

Table 1 summarises the population, intervention, comparison, 
outcomes, and inclusion and exclusion criteria used for study 
selection. Briefly, we included all cohort studies, case-control 
studies, and randomised controlled trials using ML to predict 
outcomes post-PCI. Outcomes post-PCI included those relating 
to mortality (all-cause mortality and in-hospital mortality), 
the heart (myocardial infarction, heart failure, cardiovascular 
death, arrhythmia, emergency coronary artery bypass graft, stent 
thrombosis, and coronary artery restenosis), haemodynamics 
(bleeding), the kidneys (acute kidney injury, contrast-induced 
nephropathy, and dialysis) and others (prolonged length of 
stay ≥7 days and stroke). The range in timeframes for outcome 
measurement spanned from 72 hours to 1 year.

Three reviewers independently performed the literature search, 
title and abstract review, full text sieve and data extraction, and 
all disagreements were resolved by mutual consensus. Baseline 
demographic information, comorbidities, follow-up duration, 
medication information and procedural information were collected.

For individual post-PCI outcomes, the number of patients with 
confirmed disease (ND), sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), area under the curve 
(AUC), and accuracy were collected for each ML model, when 
reported. The checklist developed by Banerjee et al12 was used in 
this study to critically appraise the included studies, mainly along 
the stages of the translational pathway: development, validation 
and impact. Quality of training data and methods of dealing with 
missing data were evaluated.

Data related to blinding and withdrawals were extracted to assess 
the risk of bias. Quality control was performed by two independent 
reviewers using the Newcastle-Ottawa Scale13 (Supplementary 
Table  2) and the Prediction Risk of Bias ASsessment Tool 
(PROBAST)14 (Supplementary Table 3). The Newcastle-Ottawa 
Scale for cohort studies considers three different domains: 
selection, comparability, and outcome. PROBAST considers four 
different domains: participants, predictors, analysis, and outcomes. 
Studies are graded as having a low, high, or an unclear risk of bias/
concern regarding applicability. The Preferred Reporting Items for 
Systematic reviews and Meta-Analyses checklist11 is included in 
Supplementary Figure 1.

We included ML models that predicted in-hospital mortality, 
myocardial infarction, and bleeding. Diagnostic accuracy data 
for the included models were extracted. The ML models used 
comprised adaptive boosting, k-nearest neighbours, LASSO, 
random forest, artificial neural network, support vector machine, 
multilayer perceptron neural network, Naïve Bayes, extreme 
gradient boosting, blended model with gradient descent boosting, 
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boosted classification trees algorithm model, and existing 
simplified risk score with LASSO regression.

Results
The Preferred Reporting Items for Systematic reviews and Meta-
Analyses flowchart is presented in Figure 1. A literature search of 
the four databases (PubMed, Embase, Cochrane, Scopus) retrieved 
2,546 results. There were 727 duplicates, which were removed. 
Title and abstract screening excluded a further 1,635 articles as 
they either did not use ML to predict outcomes post-PCI, did 
not mention PCI, or had insufficient statistical reporting of post-
PCI outcomes. Full text screening excluded 173 articles. Eleven 
studies were included for the systematic review.

The 11 studies comprised a combined cohort of 4,943,425 
patients3,9,15-23. Gao 2020 included 2 separate cohorts, comprising 
1 retrospective and 1 prospective cohort17. Thus, while the 
flowchart in Figure 1 shows 11 included studies, 12 cohorts 
were analysed in total. Across the studies, the reported post-PCI 
outcomes included in-hospital mortality, myocardial infarction, 
bleeding, and acute kidney injury. The characteristics of the 
included studies are shown in Table 2. Additional data relating 
to participant baseline characteristics, including demographics, 
medications used, and information relating to procedure(s), are 
presented in Supplementary Table 4, Supplementary Table 5, and 
Supplementary Table 6, respectively.

The sensitivity, specificity, PPV, NPV, and accuracy for the ML 
models used to predict in-hospital mortality, myocardial infarction, 

bleeding, in-hospital mortality and acute kidney injury for each 
included study are presented in Table 3. As seen, the sensitivity, 
specificity, PPV, NPV and accuracy are consistently high across 
all models.

Among the 11 studies, different ML models were used, and their 
methods of derivation varied. Clinical predictors and outcomes for 
training the ML models utilised in the 11 studies are summarised 
in Table 4. A summary of ML modalities, including the ML model 
used, software algorithm, training procedure, and optimisation 
of metrics, is presented in Table  4. The quality of training data, 
including type of study, cohort size, normalisation/standardisation, 
and validation, is presented in Table 4 and Supplementary Table 7. 
Table 5 summarises the studies included for each post-PCI outcome. 
In all, four studies investigated bleeding outcomes, three studies 
investigated acute kidney injury outcomes, five studies investigated 
in-hospital mortality and one study investigated myocardial 
infarction (Table  3, Table 5). Two studies used artificial neural 
networks, two used support vector machines, two used random 
forest algorithms, three used logistic regression models, one used 
a blended model with gradient descent boosting, two used LASSO 
techniques, two used adaptive boosting, two used extreme gradient 
boosting, one used a boosted classification tree algorithm (AI-BR) 
model, and one used a k-nearest neighbour algorithm. There were 
concerns about the development of the models. Of the 11 included 
studies, 10 were studies conducted using data from a single country 
(seven in the USA, two in China, one in Japan); only one study was 
a multinational study. The methods of dealing with missing data 

Table 1. Population, intervention, comparison, outcomes and study (PICOS) inclusion criteria and exclusion criteria applied to database 
search.

PICOS Inclusion criteria Exclusion criteria

Population Patients who have undergone PCI

Intervention ML model

Comparison Traditional risk stratification tools (i.e., CADILLAC risk 
score, PAMI risk score, Zwolle risk score, GRACE 
hospital discharge score, dynamic TIMI risk score, 
RISK-PCI score, APEX AMI risk score, residual SYNTAX 
score, DAPT Score, GUSTO score, EPICOR prognostic 
model, and other scores that may be relevant) and 
statistical modelling

Outcome Bleeding, acute kidney injury, contrast-induced 
nephropathy, dialysis, heart failure, myocardial 
infarction, cardiovascular deaths, arrhythmias, 
emergency CABG, stent thrombosis, coronary artery 
restenosis, all-cause mortality, in-hospital mortality, 
prolonged length of stay more than or equal to seven 
days, and stroke

Study design Articles in English Case reports and series, systematic reviews, narrative 
reviews, qualitative reviews, letters to the editor, 
non-human studies, abstract only (conference papers), 
non-peer-reviewed articles

Cohort studies, case-control studies, randomised 
controlled trials 

Year of publication: date of inception-29 May 2021

Databases: PubMed, Embase, Cochrane, Scopus

APEX AMI: Assessment of Pexelizumab in Acute Myocardial Infarction; CABG: coronary artery bypass graft; CADILLAC: Controlled Abciximab and 
Device Investigation to Lower Late Angioplasty Complications; DAPT: dual antiplatelet therapy; EPICOR: long-tErm follow uP of antithrombotic 
management patterns In acute CORonary syndrome patients; GRACE: Global Registry of Acute Coronary Events; GUSTO: Global Use of Strategies To 
Open Occluded Coronary Arteries; ML: machine learning; PAMI: Primary Angioplasty in Myocardial Infarction; PCI: percutaneous coronary intervention; 
PICOS: population, intervention, comparison, outcome, study; TIMI: Thrombolysis in Myocardial Infarction 
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were another issue that surfaced. The most common way of dealing 
with missing data was imputation. However, four studies did not 
discuss how missing data were handled. One study removed patients 
if any of the predictor variable data points were missing. In the 
validation stage, most studies utilised internal validation methods, 
with four studies using holdout analysis by splitting the dataset into 
training and test sets, and five studies using N-fold cross-validation. 
Only three studies externally validated the models presented. There 
could be concerns over the applicability of the models. While most 
of the studies presented evidence that the model can be used and 
interpreted in the clinical context, none of the studies discussed the 
cost-effectiveness of implementing the model.

Discussion
In this systematic review, we demonstrated that ML models may 
be useful as an adjunct to existing traditional risk stratification 
scores in predicting outcomes post-PCI, with moderate to high 
NPV and AUC.

Traditional risk stratification scores used to predict outcomes 
post-PCI include the Primary Angioplasty in Myocardial Infarction 
risk score24, the RISK-PCI score25, and the New Mayo Clinic Risk 
Score26. However, such scores are limited by their primary reliance 
on linear models and diminished ability to explore higher order 
interactions27, as they are built on parametric and semiparametric 
regression scoring systems. Traditional statistical modelling, 
which is also used to predict outcomes post-PCI, assumes a linear 
relationship between the variables and logarithmic odds of 
outcomes4. These limitations render traditional risk stratification 
scores and statistical modelling effective at making predictions at 
a population level, but less effective at accurately predicting an 
individual’s risk28.

Compared to the ML models21, the AUCs for bleeding using 
traditional scores, such as the Primary Angioplasty in Myocardial 
Infarction risk score, Thrombolysis in Myocardial Infarction 
(TIMI) risk score, Global Registry of Acute Coronary Events 
risk score, and Controlled Abciximab and Device Investigation 

Records identified through database
searching from date of inception-May 2021

(n=2,546)
PubMed: 610
Embase: 590
Cochrane: 120
Scopus: 1,226

Additional records identified through
hand search

(n=0)

Id
en
tifi
ca
tio
n

Records after duplicates removed
(n=1,819)

Records screened
(n=1,819)

Sc
re
en
in
g

Full-text articles assessed for
eligibility
(n=184)

Articles included in qualitative
synthesis
(n=11)

El
ig
ib
ili
ty

Articles included in quantitative
synthesis (meta-analysis)

(n=11)

In
cl
ud
ed

Full-text articles excluded, with reasons
(n=173)

• No machine learning used for determining
outcomes post-PCI (n=53)

• No PCI (n=28)
• Relevant outcomes not reported (n=11)
• No full text available (n=43)
• Repeated study (n=6)
• Not a cohort study/case-control

study/randomised controlled trial (n=3)
• Non-English article (n=3)
• Insufficient statistical reporting of

post-PCI outcomes (n=26)

• No machine learning used for determining
outcomes post-PCI (n=1,248) 

• No PCI (n=151)
• Insufficient statistical reporting of

post-PCI outcomes (n=236)

Records excluded
(n=1,635)

Figure 1. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow diagram of study selection. 
PCI: percutaneous coronary intervention
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Table 3. Sensitivity, specificity, PPV, NPV, and accuracy reported by studies that applied an ML method to predict different clinical 
outcomes post-percutaneous coronary intervention.

Model ML model Sensitivity Specificity PPV NPV Accuracy AUC

In-hospital mortality (best)
D'Ascenzo 202116 K-nearest neighbour 0.57 (0.53, 0.61)

D'Ascenzo 202116 Adaptive boosting 0.91 (0.91, 0.91) 0.21 (0.19, 0.23) 0.98 (0.98, 0.98) 0.89 (0.89, 0.90) 0.82 (0.79, 0.85)

Gao 202017 (training set) LASSO 0.98 (0.93, 0.99)

Gao 202017 (validation set) LASSO 0.95 (0.92, 0.97) 0.63 (0.47, 0.77) 1.00 (0.98, 1.00) 0.95 (0.92, 0.97) 0.99 (0.98, 1.00)

Al'Aref 201919 Adaptive boosting 0.93 (0.92, 0.93)

Matheny 200720 SVM 0.92 (0.91, 0.92)

Kulkarni 202123 ANN 0.92 (0.90, 0.94)

In-hospital mortality (worst)
D'Ascenzo 202116 K-nearest neighbour 0.88 (0.87, 0.89) 0.17 (0.16, 0.19) 0.98 (0.98, 0.98) 0.87 (0.86, 0.87)

D'Ascenzo 202116 Adaptive boosting 0.55 (0.51, 0.59) 0.82 (0.79, 0.85)

Gao 202017 (training set) LASSO 0.92 (0.90, 0.93) 0.51 (0.44, 0.58) 1.00 (0.99, 1.00) 0.92 (0.90, 0.94) 0.99 (0.98, 0.99)

Gao 202017 (validation set) LASSO 0.96 (0.80, 0.99)

Al'Aref 201919 Random forest 0.89 (0.89, 0.90)

Matheny 200720 SVM 0.88 (0.87, 0.88)

Kulkarni 202123 ANN 0.81 (0.76, 0.86)

Myocardial infarction (best)
D'Ascenzo 202116 Random forest 0.67 (0.63, 0.71)

D'Ascenzo 202116 Adaptive boosting 0.79 (0.78, 0.80) 0.10 (0.09, 0.11) 0.98 (0.98, 0.98) 0.78 (0.78, 0.79)

Wang 202018 SVM 0.73 (0.71, 0.75)

Wang 202018 ANN 0.72 (0.70, 0.74) 0.71 (0.69, 0.73) 0.73 (0.71, 0.75) 0.72 (0.71, 0.73)

Myocardial infarction (worst)
D'Ascenzo 202116 Random forest 0.63 (0.62, 0.64) 0.07 (0.06, 0.07) 0.98 (0.98, 0.98) 0.63 (0.62, 0.64)

D'Ascenzo 202116 Adaptive boosting 0.58 (0.54, 0.62)

Wang 202018 SVM 0.65 (0.63, 0.67) 0.67 (0.65, 0.69) 0.71 (0.69, 0.73) 0.69 (0.68, 0.70)

Wang 202018 ANN 0.72 (0.70, 0.74)

Bleeding (best)

Mortazavi 201915
Blended model with 

gradient descent 
boosting

0.37 (0.37, 0.37) 0.95 (0.95, 0.95) 0.27 (0.26, 0.27) 0.97 (0.97, 0.97) 0.93 (0.93, 0.93)

Rayfield 20209 Boosted classification 
tree algorithm 0.77 (0.72, 0.82) 0.81 (0.80, 0.82) 0.07 (0.06, 0.08) 0.99 (0.99, 1.00) 0.81 (0.80, 0.81)

Gurm 201421 Random forest 0.89 (0.88, 0.90)

Kulkarni 202123 ANN 0.80 (0.86, 0.89)

Bleeding (worst)

Mortazavi 201915
Existing simplified risk 

score with LASSO 
regularisation

0.35 (0.35, 0.35) 0.93 (0.93, 0.93) 0.20 (0.20, 0.20) 0.97 (0.97, 0.97) 0.91 (0.91, 0.91)

Rayfield 20209 Boosted classification 
tree algorithm 0.77 (0.72, 0.82) 0.81 (0.80, 0.82) 0.07 (0.06, 0.08) 0.99 (0.99, 1.00) 0.81 (0.80, 0.81)

Gurm 201421 Random forest 0.88 (0.87, 0.89)

Kulkarni 202123 ANN 0.73 (0.71, 0.76)

Acute kidney injury (best)
Huang 20183 XGBoost 0.76 (0.76, 0.76)

Kulkarni 202123 ANN 0.82 (0.81, 0.83)

Kuno 202122 Logistic regression 0.83 (0.81, 0.84)

Acute kidney injury (worst)
Huang 20183 Logistic regression 0.71 (0.71, 0.71)

Kulkarni 202123 ANN 0.63 (0.59, 0.66)

Kuno 202122 Logistic regression 0.81 (0.80, 0.83)

Values in parentheses are 95% confidence intervals. ANN: artificial neural network; AUC: area under the curve; LASSO: least absolute shrinkage and selection operator; ML: machine learning; 
NPV: negative predictive value; PPV: positive predictive value; SVM: support vector machine; XGBoost: eXtreme Gradient Boosting
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to Lower Late Angioplasty Complications risk score (AUC=0.60, 
0.62, 0.58, and 0.79, respectively)29, demonstrated lower values. 
This suggests a better performance of ML models, compared 
to traditional predictive models, in prognosticating patients 
for bleeding risk post-PCI. Compared to that of the best ML 
models22,23, the AUC for predicting acute kidney injury using 
the Primary Angioplasty in Myocardial Infarction risk score 
(AUC=0.71)29 demonstrated a lower value, whilst ML models were 
outperformed by other traditional risk models such as the TIMI 
risk score, Global Registry of Acute Coronary Events risk score, 
and Controlled Abciximab and Device Investigation to Lower 
Late Angioplasty Complications risk score (AUC=0.83, 0.78, and 
0.98, respectively)29. Several studies have also shown traditional 
statistical methods to have a similar performance to ML in clinical 

prediction situations10,30. Hence, traditional risk stratification 
scores and statistical modelling are still crucial in clinical practice, 
but ML models, which are free of linear assumptions and have 
the additional benefit of being able to control collinearity by 
optimising hyperparameters5, may be used as an adjunctive tool to 
augment clinicians’ decision-making regarding personalised risk-
benefit analysis31,32 on whether or not a patient should undergo 
elective PCI.

In contrast to traditional statistical methods, ML models tend 
to incorporate a diverse range and greater number of clinically 
relevant key variables in the training process, comprising 
demographic characteristics, medical history, preprocedural 
imaging characteristics, and procedural characteristics, as well 
as postprocedural complications and outcomes (Supplementary 

Table 4. Systematic review and quality assessment of included studies. Table 4. Systematic review and quality assessment of included studies (cont'd).

Author Al’Aref19 D’Ascenzo16 Gao17 Gurm21 Huang3 Kulkarni23 Kuno22 Matheny20 Mortazavi15 Rayfield9 Wang18

Type of study Cohort – retrospective Cohort – retrospective Cohort – retrospective 
(training set) 
Cohort – prospective 
(validation set)

Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective

Cohort size 479,804 19,826 316 30,985 947,091 26,784 14,273 7,914 PCIs 3,316,465 15,604 10,886

Cohort country USA 15 tertiary hospitals in 
North and South 
America, Europe, and 
Asia+12 European 
hospitals

China USA USA USA Japan USA USA USA China

Development

Cohort 
population

PCIRS database BleeMACS registry 
(ClinicalTrials.gov: 
NCT02466854) and the 
RENAMI 
registry+RENAMI

Hebei General Hospital, 
Baoding First Central 
Hospital, and Cangzhou 
Central Hospital

BMC2: all non-federal 
hospitals in the state of 
Michigan

NCDR CathPCI Seven hospitals – Alton 
Memorial Hospital, Alton, IL; 
Barnes-Jewish Hospital, St.
Louis, MO; Barnes-Jewish St. 
Peters Hospital, St. Peters, MO; 
Boone Hospital Center, 
Columbia, MO; Christian 
Hospital, St Louis, MO; Missouri 
Baptist Medical Center, St. 
Louis, MO; and Progress West 
HealthCare, O’Fallon, MO

JCD-KiCS registry BWH (Boston, MA) 
containing all cases 
(7,914) of PCI performed 
at the institution from 1 
January 2002 to 31 
December 2005

NCDR CathPCI Mayo Clinic CathPCI 
registry data

Sir Run Run Shaw 
hospital (Hangzhou, 
Zhejiang, China)

Normalisation/
standardisation

Yes – done before use in 
model training and 
validation

Not reported Yes – all data were 
normalised by 
transforming the data 
into new scores (z-score 
transformation) with a 
mean of 0 and a 
standard deviation of 1

Not reported Yes – may be performed during feature 
engineering step

Yes – normalisation done for 
continuous variables before use 
in model training and validation

Not reported Not reported Not reported Not reported Not reported

Validation Yes (5-fold 
cross-validation)

Yes (internal validation, 
external validation)

Yes (internal validation, 
external validation)

Yes (independent 
validation)

Yes (temporal validation performed on a more 
contemporary cohort of PCI patients from the 
NCDR CathPCI registry)

Yes (validation with a separate 
retrospective dataset)

Yes (automatic system 
validation)

Yes (3-fold cross-
validation inner and outer 
loop method)

Yes (5-fold cross-validation) Yes (10-fold 
cross-validation)

Yes (4-fold 
cross-validation)

Machine 
learning model

Adaptive boosting, 
random forest, XGBoost, 
logistic regression

Adaptive boosting, 
k-nearest neighbour

LASSO Random forest Logistic regression, XGBoost ANN MLP model Logistic model Support vector machine-P 
(CEE)-optimised, support 
vector machine-R 
(MSE)-optimised

Blended model with gradient 
descent boosting, existing 
simplified risk score with LASSO 
regression

AI-BR model Artificial neural 
networks, support 
vector machine

Software 
algorithm

Not reported SPSS Statistics, version 
24.0 (IBM)

R software, version 3.3.0 
(R Foundation for 
Statistical Computing) 
and Glmnet R package 
was used for the LASSO 
regression model

R software, version 
2.14.1, using freely 
distributed contributed 
packages

All analyses were developed in R. LASSO 
regularisation with logistic regression was 
performed using the Glmnet R package. 
XGBoost was performed using the XGBoost R 
package. Brier score, reliability, and resolution 
were calculated with the SpecsVerification R 
package

All analyses were carried out on 
R statistical software or Stata 
(StataCorp)

Statistical calculations 
and analyses performed 
using SPSS Statistics, 
version 24, R 3.5.3 and 
Python 3.7 (Python 
Software Foundation)

SVM models were 
developed using GIST 
(Columbia University, New 
York, NY, USA) 2.2.1. LR 
models were developed 
using SAS, version 9.1 
(SAS Institute)

All analyses were conducted in 
R (version 3.3.2), with Glmnet 
used for LASSO regularisation, 
XGBoost for gradient descent 
boosting and pROC for C 
statistics; mgcv and sandwich 
were used for the continuous 
calibration curves and 
SpecsVerification was used for 
the Brier score

R software, version 
3.5.1

Python 3.x 
software+SPSS 
Statistics for macOS, 
version 23
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Table  8). This facilitates the development of a more robust 
algorithm, guiding the prediction of post-PCI outcomes in clinical 
practice in a more precise manner.

Moreover, ML models, especially deep learning models, are 
adept in handling high-dimensional and complex data. This is 
particularly beneficial in healthcare systems, where a vast amount 
of data is constantly generated from diverse sources. While 
traditional methods can capture non-linear relationships, ML 
models can do so in a more flexible manner and without need 
for explicit specification of polynomial terms and interaction 
variables. In addition, techniques like cross-validation and 
regularisation in ML can facilitate the development of models 
that generalise better on unseen data, a key consideration in 
clinical applications. 

It is worthwhile to note that Greenhalgh et al previously published 
a multilevel non-adoption, abandonment, scale-up, spread, and 
sustainability (NASSS) framework for studying the diffusion of 
innovations and promoting technology adoption in healthcare 
systems33. This framework takes into account key factors including 
the condition, technology, value proposition, adopters, organisation, 
the wider system, and adaptation over time. Application of this 
framework to ML models in PCI could potentially aid in the 
translation of algorithmic success to patient benefit.

The high NPVs using the ML models for in-hospital mortality, 
myocardial infarction, and bleeding, of 100%, 99%, and 98%, 
respectively, demonstrate that patients who were predicted not 
to have poor outcomes post-PCI indeed did not suffer from such 
complications, thus guiding risk-benefit analysis for PCI. Poor 

Table 4. Systematic review and quality assessment of included studies. Table 4. Systematic review and quality assessment of included studies (cont'd).

Author Al’Aref19 D’Ascenzo16 Gao17 Gurm21 Huang3 Kulkarni23 Kuno22 Matheny20 Mortazavi15 Rayfield9 Wang18

Type of study Cohort – retrospective Cohort – retrospective Cohort – retrospective 
(training set) 
Cohort – prospective 
(validation set)

Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective Cohort – retrospective

Cohort size 479,804 19,826 316 30,985 947,091 26,784 14,273 7,914 PCIs 3,316,465 15,604 10,886

Cohort country USA 15 tertiary hospitals in 
North and South 
America, Europe, and 
Asia+12 European 
hospitals

China USA USA USA Japan USA USA USA China

Development

Cohort 
population

PCIRS database BleeMACS registry 
(ClinicalTrials.gov: 
NCT02466854) and the 
RENAMI 
registry+RENAMI

Hebei General Hospital, 
Baoding First Central 
Hospital, and Cangzhou 
Central Hospital

BMC2: all non-federal 
hospitals in the state of 
Michigan

NCDR CathPCI Seven hospitals – Alton 
Memorial Hospital, Alton, IL; 
Barnes-Jewish Hospital, St.
Louis, MO; Barnes-Jewish St. 
Peters Hospital, St. Peters, MO; 
Boone Hospital Center, 
Columbia, MO; Christian 
Hospital, St Louis, MO; Missouri 
Baptist Medical Center, St. 
Louis, MO; and Progress West 
HealthCare, O’Fallon, MO

JCD-KiCS registry BWH (Boston, MA) 
containing all cases 
(7,914) of PCI performed 
at the institution from 1 
January 2002 to 31 
December 2005

NCDR CathPCI Mayo Clinic CathPCI 
registry data

Sir Run Run Shaw 
hospital (Hangzhou, 
Zhejiang, China)

Normalisation/
standardisation

Yes – done before use in 
model training and 
validation

Not reported Yes – all data were 
normalised by 
transforming the data 
into new scores (z-score 
transformation) with a 
mean of 0 and a 
standard deviation of 1

Not reported Yes – may be performed during feature 
engineering step

Yes – normalisation done for 
continuous variables before use 
in model training and validation

Not reported Not reported Not reported Not reported Not reported

Validation Yes (5-fold 
cross-validation)

Yes (internal validation, 
external validation)

Yes (internal validation, 
external validation)

Yes (independent 
validation)

Yes (temporal validation performed on a more 
contemporary cohort of PCI patients from the 
NCDR CathPCI registry)

Yes (validation with a separate 
retrospective dataset)

Yes (automatic system 
validation)

Yes (3-fold cross-
validation inner and outer 
loop method)

Yes (5-fold cross-validation) Yes (10-fold 
cross-validation)

Yes (4-fold 
cross-validation)

Machine 
learning model

Adaptive boosting, 
random forest, XGBoost, 
logistic regression

Adaptive boosting, 
k-nearest neighbour

LASSO Random forest Logistic regression, XGBoost ANN MLP model Logistic model Support vector machine-P 
(CEE)-optimised, support 
vector machine-R 
(MSE)-optimised

Blended model with gradient 
descent boosting, existing 
simplified risk score with LASSO 
regression

AI-BR model Artificial neural 
networks, support 
vector machine

Software 
algorithm

Not reported SPSS Statistics, version 
24.0 (IBM)

R software, version 3.3.0 
(R Foundation for 
Statistical Computing) 
and Glmnet R package 
was used for the LASSO 
regression model

R software, version 
2.14.1, using freely 
distributed contributed 
packages

All analyses were developed in R. LASSO 
regularisation with logistic regression was 
performed using the Glmnet R package. 
XGBoost was performed using the XGBoost R 
package. Brier score, reliability, and resolution 
were calculated with the SpecsVerification R 
package

All analyses were carried out on 
R statistical software or Stata 
(StataCorp)

Statistical calculations 
and analyses performed 
using SPSS Statistics, 
version 24, R 3.5.3 and 
Python 3.7 (Python 
Software Foundation)

SVM models were 
developed using GIST 
(Columbia University, New 
York, NY, USA) 2.2.1. LR 
models were developed 
using SAS, version 9.1 
(SAS Institute)

All analyses were conducted in 
R (version 3.3.2), with Glmnet 
used for LASSO regularisation, 
XGBoost for gradient descent 
boosting and pROC for C 
statistics; mgcv and sandwich 
were used for the continuous 
calibration curves and 
SpecsVerification was used for 
the Brier score

R software, version 
3.5.1

Python 3.x 
software+SPSS 
Statistics for macOS, 
version 23
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outcomes such as in-hospital mortality, myocardial infarction, 
and bleeding, might diminish the overall utility of PCI. The high 
discriminatory value serves as a good adjunctive clinical tool to allow 
clinicians to weigh the risks and benefits of PCI for their patients.

We have also critically appraised the studies along the key 
elements of the translational pathway. Development is hampered 
by the population in each cohort. Of the 12 cohorts included, 
seven cohorts analysed populations in the USA3,9,15,19-21,23, three 

Table 4. Systematic review and quality assessment of included studies (cont'd). Table 4. Systematic review and quality assessment of included studies (cont'd).

Author Al’Aref19 D’Ascenzo16 Gao17 Gurm21 Huang3 Kulkarni23 Kuno22 Matheny20 Mortazavi15 Rayfield9 Wang18

Development

Training 
procedure

5-fold cross-validation 
on the dataset for each 
model. Attribute 
selection was done after 
fine-tuning of the 
hyperparameter 
– defined as the model 
parameters that are 
given an arbitrary value 
before the initiation of 
the learning process. 
Attribute selection was 
performed using the 
information gain ranking 
method that aims at 
ranking features based 
on high information gain 
entropy. The attributes 
with information gain 
>0 were only used for 
the ML approach.

The derivation cohort 
was randomly split into 
2 datasets: a training 
(80%) cohort, which was 
used to train the 4 ML 
models and tune their 
parameters, and an 
internal validation 
(20%) cohort, which was 
used to test the 
developed models on 
unseen data and to 
fine-tune the 
hyperparameters. To 
determine the major 
predictors of each study 
outcome in our patient 
population, the 
importance of each 
permutation feature was 
measured from the final 
model. Permutation 
feature importance 
computes the value of 
each feature included in 
the model by calculating 
the increase in the 
model’s prediction error 
after permuting its 
values. A feature is 
considered important if 
permuting its values 
decreases the model’s 
discriminative capability, 
as the model relies 
heavily on that feature 
for the prediction.

The LASSO method was 
used to select the 
features that were the 
most significantly 
associated with the 
outcome (in-hospital 
mortality). Then, a 
regression model was 
built using the selected 
variables. The λ value 
was selected for which 
the cross-validation error 
was the smallest. Finally, 
the model was refitted 
using all available 
observations and the 
selected λ. Thus, most of 
the coefficients of the 
covariates were reduced 
to 0, and the remaining 
non-zero coefficients 
were selected by LASSO.

The study cohort was 
divided randomly into 
training and validation 
datasets, with 70% of 
procedures assigned to 
training, and the 
remaining 30% utilised 
for validation. A random 
forest regression model 
was trained for 
predicting transfusion 
using 45 baseline 
clinical variables 
including preprocedural 
medications, with 
missing predictors 
imputed to be the overall 
median for continuous 
values and mode for 
categorical variables. 
The transfusion outcome 
was entered as a 
continuous variable 
coded as 1 in patients 
who were transfused, 
and 0 for those not 
meeting the criteria to 
facilitate regression 
rather than 
classification modelling, 
so that estimated means 
(leaf node probabilities 
of transfusion) assigned 
to a given observation 
were then aggregated in 
the ensemble. To 
facilitate the 
development of an 
easy-to-use bedside tool, 
a reduced model was 
also trained using only 
the 14 most important 
predictors as assessed 
in the full model by the 
incremental decrease in 
node impurity (residual 
sum of squares) 
associated with splitting 
on the predictor 
averaged over all trees in 
the ensemble.

9 prediction models were developed, with 
combinations of the following 3 categories: (1) 
preprocessing models (strategy A vs 
strategy B), (2) variable selection (stepwise 
backward selection with logistic regression vs 
LASSO regularisation with logistic regression 
vs permutation-based selection with XGBoost) 
and (3) relationship modelling: (logistic 
regression model vs ML method XGBoost).
Analytic cohort was randomly split into a 
training set (70% of the cohort) and a test set 
(30% of the cohort). The 9 models were built 
using data from the training set only, and the 
corresponding selected variables were 
recorded. Finally, the performance of the 
models was assessed on the internal test set.

Randomly shuffled dataset was 
split into a derivation set 
(n=21,004) and a validation 
dataset (n=7,001). All training 
for ML algorithms used data from 
the derivation set, while all 
models were validated on data 
from the validation set. Data 
preprocessing was undertaken 
using variable encoding. The 2 
generated datasets were used to 
develop 2 separate learning 
models for each outcome – one 
incorporating baseline and 
pre-PCI variables, and the other 
incorporating variables related to 
the PCI procedure. Predictions 
from these two models were then 
finally combined into a single 
prediction model using logistic 
regression. For each training 
epoch, the estimated best fitting 
model was independently applied 
to the test set (the encoded 
dataset obtained from the 
validation set) to trace the 
classification accuracy. Model 
training continued as long as 
there was improvement in the 
classification accuracy for both 
the training and the 
independently assessed test set. 
If the model only showed 
accuracy improvement in the 
training set but showed a 
decreased accuracy for the test 
set, then a potential overfitting 
was interpreted, and model 
training was stopped.

Restricted cubic spline 
with multivariate 
logistic regression 
models were used to 
assess the association 
between absolute/
relative decrease in 
haemoglobin and AKI. 
ML was constructed 
with a neural network to 
evaluate the 
association between 
periprocedural 
haemoglobin reduction 
and AKI and for risk 
stratification of AKI, by 
comparing the effect of 
NCDR variables versus 
NCDR variables plus 
haemoglobin absolute 
change (continuous 
value) versus NCDR 
variables plus 
haemoglobin relative 
change (continuous 
value) and with logistic 
models.

The cases were used to 
generate 100 random 
datasets. All cases were 
used in each set, and 
5,540 were allocated for 
training and 2,374 were 
allocated for testing. For 
SVM evaluation, each 
training set was randomly 
divided into 3,957 kernel 
training and 1,583 
sigmoid training portions. 
The parameter of each 
kernel type (d and w for 
the polynomial and 
Gaussian kernels, 
respectively) and the 
magnitude of the constant 
applied to the soft margin 
were optimised on the 
kernel training set 
separately for AUC, HL χ2, 
MSE, and CEE indices by 
a grid search method, 
using 3-fold cross- 
validation. The sigmoid 
training set was used to 
convert SVM results into 
probabilities. Using the 
training set cross-
validation results for each 
of the performance 
measures, the best set of 
parameters for the radial 
and polynomial kernels 
were used to generate a 
model on the entire kernel 
training set, and a 
sigmoid for discriminant 
conversion was generated 
using the sigmoid training 
set. Each of the models 
was then evaluated using 
the respective test 
dataset. Logistic 
regression was chosen to 
provide the benchmark for 
SVM comparisons, with 
similar 3-fold 
cross-validation 
performed on each 
training dataset to 
optimise feature selection 
threshold for AUC, HL χ2, 
MSE, and CEE 
performance measures.

Derivation and validation 
cohorts were created using 
stratified 5-fold cross-
validation. Each variable set 
was divided randomly into 
5 equal subsets, preserving the 
same event rate in each subset, 
by first randomly dividing 
bleeding cases and then 
non-bleeding cases. Each 
bleeding subset was then 
paired with 1 non-bleeding 
subset. The derivation cohort 
combined 4 (80%) of the 
subsets; the remaining subset 
(20%) was reserved as a 
validation set. This process was 
repeated 5 times, such that 
each of the subsets served as 
the validation set. Two methods 
were used to train models in the 
analysis: logistic regression 
with LASSO regularisation and 
gradient descent boosting 
– XGBoost. The final model used 
1,000 trees, a learning rate of 
0.1, and a maximum depth of 
each tree of 6, and it was 
trained with an objective 
function aimed at minimising 
errors similar to logistic 
regression for binary 
classification (bleed vs 
non-bleed).

All recorded variables 
were considered 
candidate variables. 
The variables, once 
scaled, were fed into an 
AI-BR. This model 
trained the base 
estimator on the 
training set and 
observed the training 
data samples that the 
base estimator 
misclassified and 
created a weighted 
coefficient for these 
samples. A second base 
estimator was then 
trained, applying the 
above weight 
coefficient, to samples 
when calculating the 
entropy measure of 
homogeneity. Boosting 
was performed to create 
successive base 
classifiers that were 
programmed to place 
greater emphasis on 
the misclassified 
samples from the 
training data. Finally, a 
probability of class 
membership was 
calculated based on the 
sum of the individual 
tree results for each 
patient. If the sum was 
>50% probability of 
bleeding, the patient 
was predicted to have 
bled.

Feature selection by 
information gain 
measured how much 
information an attribute 
gave researchers about 
the outcome to be 
predicted. Class-
balanced oversampling 
method was another 
approach to balance 
the imbalanced 
dataset. Drop 
imputation and mean 
imputation were 
individually applied in 
the dataset to build ML 
models.

Optimising 
metrics

AUC AUC AUC AUC AUC, Brier score, resolution, reliability AUC AUC AUC, mean  squared error, 
mean CEE, HL 
goodness-of-fit test

AUC ROC curve AUC of ROC curve

AI-BR: boosted classification tree algorithm; AKI: acute kidney injury; ANN: artificial neural network; AUC: area under the curve; BleeMACS: Bleeding complications in a Multicenter registry of 
patients discharged with diagnosis of Acute Coronary Syndrome; BMC2: Blue Cross Blue Shield of Michigan Cardiovascular Consortium 2; BWH: Brigham and Women’s Hospital; CEE: 
cross-entropy error; HL: Hosmer-Lemeshow; JCD-KiCS: Japanese Cardiovascular Database-Keio interhospital Cardiovascular Studies; LASSO: least absolute shrinkage and selection operator; 

LR: logistic regression; ML: machine learning; MLP: multilayer perceptron; MSE: mean squared error; NCDR: National Cardiovascular Data Registry; PCI: percutaneous coronary intervention; 
PCIRS: Percutaneous Coronary Interventions Reporting System; RENAMI: REgistry of New Antiplatelets in patients with Myocardial Infarction; ROC: receiver operating characteristic; 
SVM: support vector machine; XGBoost: eXtreme Gradient Boosting
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cohorts analysed populations in China17,18, one cohort analysed 
populations in Japan22, and one cohort analysed populations 
across North America, South America, Europe, and Asia16. The 
small number of countries where these ML models have been 

developed could limit the generalisability of the results to other 
potentially underinvestigated, underserved populations. The 
applicability of the results could also be reduced by the lack of 
external validation. To date, only one study16 externally validated 

Table 4. Systematic review and quality assessment of included studies (cont'd). Table 4. Systematic review and quality assessment of included studies (cont'd).

Author Al’Aref19 D’Ascenzo16 Gao17 Gurm21 Huang3 Kulkarni23 Kuno22 Matheny20 Mortazavi15 Rayfield9 Wang18

Development

Training 
procedure

5-fold cross-validation 
on the dataset for each 
model. Attribute 
selection was done after 
fine-tuning of the 
hyperparameter 
– defined as the model 
parameters that are 
given an arbitrary value 
before the initiation of 
the learning process. 
Attribute selection was 
performed using the 
information gain ranking 
method that aims at 
ranking features based 
on high information gain 
entropy. The attributes 
with information gain 
>0 were only used for 
the ML approach.

The derivation cohort 
was randomly split into 
2 datasets: a training 
(80%) cohort, which was 
used to train the 4 ML 
models and tune their 
parameters, and an 
internal validation 
(20%) cohort, which was 
used to test the 
developed models on 
unseen data and to 
fine-tune the 
hyperparameters. To 
determine the major 
predictors of each study 
outcome in our patient 
population, the 
importance of each 
permutation feature was 
measured from the final 
model. Permutation 
feature importance 
computes the value of 
each feature included in 
the model by calculating 
the increase in the 
model’s prediction error 
after permuting its 
values. A feature is 
considered important if 
permuting its values 
decreases the model’s 
discriminative capability, 
as the model relies 
heavily on that feature 
for the prediction.

The LASSO method was 
used to select the 
features that were the 
most significantly 
associated with the 
outcome (in-hospital 
mortality). Then, a 
regression model was 
built using the selected 
variables. The λ value 
was selected for which 
the cross-validation error 
was the smallest. Finally, 
the model was refitted 
using all available 
observations and the 
selected λ. Thus, most of 
the coefficients of the 
covariates were reduced 
to 0, and the remaining 
non-zero coefficients 
were selected by LASSO.

The study cohort was 
divided randomly into 
training and validation 
datasets, with 70% of 
procedures assigned to 
training, and the 
remaining 30% utilised 
for validation. A random 
forest regression model 
was trained for 
predicting transfusion 
using 45 baseline 
clinical variables 
including preprocedural 
medications, with 
missing predictors 
imputed to be the overall 
median for continuous 
values and mode for 
categorical variables. 
The transfusion outcome 
was entered as a 
continuous variable 
coded as 1 in patients 
who were transfused, 
and 0 for those not 
meeting the criteria to 
facilitate regression 
rather than 
classification modelling, 
so that estimated means 
(leaf node probabilities 
of transfusion) assigned 
to a given observation 
were then aggregated in 
the ensemble. To 
facilitate the 
development of an 
easy-to-use bedside tool, 
a reduced model was 
also trained using only 
the 14 most important 
predictors as assessed 
in the full model by the 
incremental decrease in 
node impurity (residual 
sum of squares) 
associated with splitting 
on the predictor 
averaged over all trees in 
the ensemble.

9 prediction models were developed, with 
combinations of the following 3 categories: (1) 
preprocessing models (strategy A vs 
strategy B), (2) variable selection (stepwise 
backward selection with logistic regression vs 
LASSO regularisation with logistic regression 
vs permutation-based selection with XGBoost) 
and (3) relationship modelling: (logistic 
regression model vs ML method XGBoost).
Analytic cohort was randomly split into a 
training set (70% of the cohort) and a test set 
(30% of the cohort). The 9 models were built 
using data from the training set only, and the 
corresponding selected variables were 
recorded. Finally, the performance of the 
models was assessed on the internal test set.

Randomly shuffled dataset was 
split into a derivation set 
(n=21,004) and a validation 
dataset (n=7,001). All training 
for ML algorithms used data from 
the derivation set, while all 
models were validated on data 
from the validation set. Data 
preprocessing was undertaken 
using variable encoding. The 2 
generated datasets were used to 
develop 2 separate learning 
models for each outcome – one 
incorporating baseline and 
pre-PCI variables, and the other 
incorporating variables related to 
the PCI procedure. Predictions 
from these two models were then 
finally combined into a single 
prediction model using logistic 
regression. For each training 
epoch, the estimated best fitting 
model was independently applied 
to the test set (the encoded 
dataset obtained from the 
validation set) to trace the 
classification accuracy. Model 
training continued as long as 
there was improvement in the 
classification accuracy for both 
the training and the 
independently assessed test set. 
If the model only showed 
accuracy improvement in the 
training set but showed a 
decreased accuracy for the test 
set, then a potential overfitting 
was interpreted, and model 
training was stopped.

Restricted cubic spline 
with multivariate 
logistic regression 
models were used to 
assess the association 
between absolute/
relative decrease in 
haemoglobin and AKI. 
ML was constructed 
with a neural network to 
evaluate the 
association between 
periprocedural 
haemoglobin reduction 
and AKI and for risk 
stratification of AKI, by 
comparing the effect of 
NCDR variables versus 
NCDR variables plus 
haemoglobin absolute 
change (continuous 
value) versus NCDR 
variables plus 
haemoglobin relative 
change (continuous 
value) and with logistic 
models.

The cases were used to 
generate 100 random 
datasets. All cases were 
used in each set, and 
5,540 were allocated for 
training and 2,374 were 
allocated for testing. For 
SVM evaluation, each 
training set was randomly 
divided into 3,957 kernel 
training and 1,583 
sigmoid training portions. 
The parameter of each 
kernel type (d and w for 
the polynomial and 
Gaussian kernels, 
respectively) and the 
magnitude of the constant 
applied to the soft margin 
were optimised on the 
kernel training set 
separately for AUC, HL χ2, 
MSE, and CEE indices by 
a grid search method, 
using 3-fold cross- 
validation. The sigmoid 
training set was used to 
convert SVM results into 
probabilities. Using the 
training set cross-
validation results for each 
of the performance 
measures, the best set of 
parameters for the radial 
and polynomial kernels 
were used to generate a 
model on the entire kernel 
training set, and a 
sigmoid for discriminant 
conversion was generated 
using the sigmoid training 
set. Each of the models 
was then evaluated using 
the respective test 
dataset. Logistic 
regression was chosen to 
provide the benchmark for 
SVM comparisons, with 
similar 3-fold 
cross-validation 
performed on each 
training dataset to 
optimise feature selection 
threshold for AUC, HL χ2, 
MSE, and CEE 
performance measures.

Derivation and validation 
cohorts were created using 
stratified 5-fold cross-
validation. Each variable set 
was divided randomly into 
5 equal subsets, preserving the 
same event rate in each subset, 
by first randomly dividing 
bleeding cases and then 
non-bleeding cases. Each 
bleeding subset was then 
paired with 1 non-bleeding 
subset. The derivation cohort 
combined 4 (80%) of the 
subsets; the remaining subset 
(20%) was reserved as a 
validation set. This process was 
repeated 5 times, such that 
each of the subsets served as 
the validation set. Two methods 
were used to train models in the 
analysis: logistic regression 
with LASSO regularisation and 
gradient descent boosting 
– XGBoost. The final model used 
1,000 trees, a learning rate of 
0.1, and a maximum depth of 
each tree of 6, and it was 
trained with an objective 
function aimed at minimising 
errors similar to logistic 
regression for binary 
classification (bleed vs 
non-bleed).

All recorded variables 
were considered 
candidate variables. 
The variables, once 
scaled, were fed into an 
AI-BR. This model 
trained the base 
estimator on the 
training set and 
observed the training 
data samples that the 
base estimator 
misclassified and 
created a weighted 
coefficient for these 
samples. A second base 
estimator was then 
trained, applying the 
above weight 
coefficient, to samples 
when calculating the 
entropy measure of 
homogeneity. Boosting 
was performed to create 
successive base 
classifiers that were 
programmed to place 
greater emphasis on 
the misclassified 
samples from the 
training data. Finally, a 
probability of class 
membership was 
calculated based on the 
sum of the individual 
tree results for each 
patient. If the sum was 
>50% probability of 
bleeding, the patient 
was predicted to have 
bled.

Feature selection by 
information gain 
measured how much 
information an attribute 
gave researchers about 
the outcome to be 
predicted. Class-
balanced oversampling 
method was another 
approach to balance 
the imbalanced 
dataset. Drop 
imputation and mean 
imputation were 
individually applied in 
the dataset to build ML 
models.

Optimising 
metrics

AUC AUC AUC AUC AUC, Brier score, resolution, reliability AUC AUC AUC, mean  squared error, 
mean CEE, HL 
goodness-of-fit test

AUC ROC curve AUC of ROC curve

AI-BR: boosted classification tree algorithm; AKI: acute kidney injury; ANN: artificial neural network; AUC: area under the curve; BleeMACS: Bleeding complications in a Multicenter registry of 
patients discharged with diagnosis of Acute Coronary Syndrome; BMC2: Blue Cross Blue Shield of Michigan Cardiovascular Consortium 2; BWH: Brigham and Women’s Hospital; CEE: 
cross-entropy error; HL: Hosmer-Lemeshow; JCD-KiCS: Japanese Cardiovascular Database-Keio interhospital Cardiovascular Studies; LASSO: least absolute shrinkage and selection operator; 

LR: logistic regression; ML: machine learning; MLP: multilayer perceptron; MSE: mean squared error; NCDR: National Cardiovascular Data Registry; PCI: percutaneous coronary intervention; 
PCIRS: Percutaneous Coronary Interventions Reporting System; RENAMI: REgistry of New Antiplatelets in patients with Myocardial Infarction; ROC: receiver operating characteristic; 
SVM: support vector machine; XGBoost: eXtreme Gradient Boosting
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the model in a multinational cohort. More resources should be 
allocated to validate the model and apply the results in more 
diverse patient populations. Another issue of missing data surfaced 
in our analysis. Four studies did not discuss how missing data 
were handled. One study conducted complete case analysis by 
removing patients with missing predictor variable data points. 
Unclear methods of handling missing data, or complete case 
analysis, may lead to underpowered studies or bias, especially if 
the data are not missing at random34.

Limitations
To the best of our knowledge, this is the first review to critically 
appraise and review the accuracy of ML models used in predicting 
outcomes post-PCI. Comprehensive data comprising baseline 
clinical characteristics, training procedures for ML models, quality 
of training data and ML outcomes were retrieved, analysed, and 
synthesised from individual studies to evaluate the accuracy of 
ML models in predicting pertinent post-PCI outcomes.

Nonetheless, this study should be interpreted in the context of 
known and potential limitations. Firstly, there existed significant 
heterogeneity among the studies included in this systematic 
review. For the clinical predictors reported, while the categories 
of predictors used were largely similar, the individual predictors 
included in each category differed across the studies. The 
baseline demographics of study populations also differed, and the 
duration of follow-up for post-PCI outcomes was not reported 
in the majority of the included studies. Most studies examined 
supervised machine learning techniques such as LASSO and 
random forest models (Table 4). Also, the performance between 
different models, particularly that of deep learning networks and 
traditional supervised ML models, was not reported. Further 
studies should be conducted to explore the different ML models 

and to determine which ML models have the best predictive 
performance.

Secondly, while the quality of training data was overall high, 
the majority of the studies (n=10) were retrospective in nature, 
which may further introduce bias into the training of ML models. 
Moreover, software algorithms and training procedures employed 
for ML models across studies were not standardised. Also, ML 
models can be very sensitive to the optimisation model chosen20. 
Thus, caution should be exercised before declaring any model to 
be superior to other risk prediction tools.

Thirdly, the “black box” technology of ML models leads to 
these models being complex and unpredictable because of a lack 
of transparency about the underlying decision-making processes. 
Input data may undergo complex transformations in multiple 
layers of the algorithm, with the relationship between individual 
clinical predictors and contribution of each predictor to the outcome 
unknown to the user35. The complex datasets utilised in ML models 
may also be prone to missing data, unmeasured confounding, and 
systemic errors, all of which may further compromise the validity 
of the models’ predictions35. Also, ML models with low sensitivity 
may miss patients at risk of adverse outcomes post-PCI. This 
may impact clinicians’ ability to accurately weigh the risks and 
benefits of elective PCI, affect preprocedural counselling, and may 
potentially lead to medico-legal issues. To mitigate this issue, the 
developers of ML algorithms should define the purpose (screening 
vs diagnosis) of the ML models and choose a binary threshold in the 
validation set to derive appropriate sensitivities. In the usage of low-
sensitivity ML models, outcome predictions made using ML models 
must ultimately still be interpreted cautiously in appropriate clinical 
contexts, which should be done by experienced clinicians.

Lastly, while the findings of our research are informative 
and useful for understanding PCI outcomes, it is important to 
acknowledge that they may not be universally applicable to 
all scenarios. This is due to the fact that all of the included 
studies are single-centre studies, four of them have unclear 
data handling strategies, and only three externally validated 
the models presented. This significantly increases the risk of 
overfitting to training data, limiting the interpretation of good 
model performance. Thus, it is challenging to comment on the 
definitive benefit of real-world effectiveness. The majority of 
the studies also focused on the USA (seven studies), with two 
studies focused on China, but not other countries, limiting 
generalisability. In light of the fact that the robustness and 
generalisability may be overstated, PROBAST was performed. 
Ultimately, outcome predictions by ML models must still be 
interpreted judiciously and contextualised to each case.

Conclusions
In this systematic review, we demonstrated that ML models may be 
a valuable clinical adjunct to existing traditional risk stratification 
scores in predicting outcomes post-PCI, with moderate to high NPV 
and AUC. Such a clinical tool may one day guide clinicians in 
prognostication of complications and the selection of patients with 

Table 5. Summary table of studies included for each outcome.

Outcome
Number of 

studies
Studies included

Bleeding AUC 2 Gurm 201421

Kulkarni 202123

Acute kidney injury AUC 3
Huang 20183

Kulkarni 202123

Kuno 202122

In-hospital mortality AUC 5

D’Ascenzo 202116

Gao 202017

Al’Aref 201919

Matheny 200720

Kulkarni 202123

Bleeding sensitivity, specificity, 
PPV, NPV, and accuracy 2 Mortazavi 201915

Rayfield 20209

Myocardial infarction sensitivity, 
specificity, PPV, NPV, and 
accuracy

1 D’Ascenzo 202116

In-hospital mortality sensitivity, 
specificity, PPV, NPV, and 
accuracy

2 D’Ascenzo 202116

Gao 202017

AUC: area under the curve; NPV: negative predictive value; PPV: positive 
predictive value
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the most optimal risk-benefit profile to undergo the procedure. The 
limitations of the findings are difficult to address in the near future, 
as the data and technological needs to incorporate ML models into 
daily clinical practice would require some time to develop. Given 
the heterogeneity and retrospective design of the studies analysed, 
future prospective studies are required to investigate the accuracy 
of ML models more consistently. Employment of larger datasets 
to train ML models, and refinement of existing ML algorithms 
via improvements in development and validation may also help to 
improve the sensitivity, specificity, predictive values, and accuracy 
of ML models to facilitate their meaningful use in clinical practice.

Impact on daily practice
We suggest that machine learning (ML) can be used as an adjunct 
to help clinicians weigh the risks and benefits of percutaneous 
coronary intervention (PCI) versus continued medical therapy in 
elderly patients with multiple comorbidities who are at higher 
risk of complications. When a patient presents for elective PCI, 
clinicians can extract demographic data and past medical history 
from the electronic health records and enter them into the ML 
algorithm. Following a targeted history, physical examination, 
and investigations, clinicians can input further relevant data, 
including preprocedural imaging data, into the ML algorithm, 
to determine the potential benefit and personalised risk, so 
that patients can make a better-informed decision. By selecting 
the most suitable patients with precision medicine, morbidity, 
mortality, and healthcare burden can be decreased.
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Supplementary Table 1. Search terms. 
 

Concept Search Terms 

Machine Learning “machine learning” OR “convolutional network” OR “deep network” 

OR “neural network” OR “neural networks” OR “bayesian network” 

OR “classification tree” OR “regression tree” OR “probability tree” 

OR “multilayer perceptron” OR “artificial intelligence” OR “deep 

learning” OR “decision trees” OR “random forest” OR “support vector 

machine” OR “SVM” OR “elastic net” OR “ridge” OR “lasso” 

Prediction “predictive modelling” OR “predictive model” OR “predict” OR 

“prediction” OR “forecast” OR “learning algorithm” OR “learning 

algorithms” OR “bayesian logistic regression” 

Percutaneous Coronary Intervention “percutaneous coronary intervention” OR “PCI” OR “drug eluting 

stent” OR “coronary stent” OR “coronary angioplasty” OR 

“angioplasty with stent” OR “stent” OR “angina” OR “myocardial 

infarction” OR “acute coronary syndrome” OR “ACS” 

 
  



 

Supplementary Table 2. Evaluation of risk of bias using the Newcastle-Ottawa Scale (NOS). 
 

Study Representative
ness of cohort 

Selecti
on of 
the 
non- 
expose
d 
cohort 

Ascertainme
nt of 
exposure 

Demonstrati
on that 
outcome of 
interest was 
not present 
at start of 
study 

Comparabili
ty of cohorts 
on the basis 
of the design 
or analysis 
controlled 
for 
confounders 

Assessmen
t of 
outcome 

Was 
follow-
up long 
enough 
for 
outcom
es 
to occur 

Adequac
y of 
follow- 
up of 
cohorts 

Fin
al 
scor
e 

Risk 
of 
bias 

Al'Ar
ef 
2019 

*  * * * *   5 Moderate 

D'Ascen
zo 2021 

*  *  * * *  5 Moderate 

Gao 2020 *  * * * *   5 Moderate 
Gur
m 
201
4 

*  * * ** *   6 Moderate 

Kulkarni 
2021 

*  * * * *   5 Moderate 

Kuno 
2020 

*  * * ** *   6 Moderate 

Mathe
ny 
2007 

*  * * ** *   6 Moderate 

Mortazavi 
2019 

*  *  ** * *  6 Moderate 

Rayfie
ld 
2020 

* * * * ** *   7 Moderate 

  



 

Supplementary Table 3. Evaluation of risk of bias using the Prediction Risk of Bias ASsessment Tool (PROBAST). 
 

Study Participants Predictors Outcomes Analysis Overall 

Al'Ar
ef 
2019 

  +  - +  + - 

D'Ascen
zo 2021 

  + ? +  + + 

Gao 2020   +   - + + - 
Gur
m 
201
4 

+  + + - - 

Kulkarni 
2021 

+  - + + + 

Kuno 
2020 

+  - + + - 

Mathe
ny 
2007 

+  +    + - + 

Mortazavi 
2019 

+  - +  ? ? 

Rayfie
ld 
2020 

+  - + - - 

 
*+ indicates low ROB/low concern regarding applicability; - indicates high ROB/high concern regarding applicability; and ? indicates unclear ROB/unclear concern 
regarding applicability 



 

 
Supplementary Table 4. Additional data on participant baseline characteristics (demographics). 

 
STUDY 
NAME 

AGE (mean 
years ± SD, 

(range)) 

MALES 
(%) 

PRESENT 
SMOKER (%) 

BMI (kg/m2) DM (%) HTN (%) HLD (%) AF (%) CAD (%) Prior MI 
(%) 

Prior 
CVA/TIA (%) 

Prior PCI 
(%) 

Prior 
CABG (%) 

LVEF (%) 

Al'Aref 
2019 

65.2±11.9 31.5 NR 29.4±5.9 33.7 NR NR NR NR NR NR 22.1 16.5 50.6±14.5 

D'Ascenzo 
2021 64 (54-73) 78.0 NR NR 24.8 55.9 51.0 NR NR 12.6 5.6 12.7 2.7 55 (39-61) 

Gao 2020 25.40±3.45 
 

71.2  40.8 25.40±3.45 
 

20.9  47.2  NR NR NR NR NR NR NR 53.94±7.62 
 

Gurm 2014 64.91±12.08 
 

65.6 
 

29.7  30.51±7.54 
 

37.1 
 

85.2 
 

83.2 
 

NR NR 35.4 
 

NR 45.3 18.7 52.08±12.67 
 

Huang 
2018 

64.8±12.2 32.8 NR 30.1±11.8 35.8 81.8 NR NR NR 29.8 12.2 39.7 18.6 NR 

Kulkarni 
2021 

65.6 65.3 27.0 NR 40.4 83.8 84.5 NR NR 34.8 16.7 49.6 22.5 52.1 

Kuno 2021 68.4±11.6 79.0 NR NR 40.4 72.8 63.8 NR NR 20.9 8.9 31.9 4.3 NR 
Matheny 
2007 NR NR NR NR NR NR NR NR NR NR NR NR NR NR 

Mortazavi 
2019 

65 68.1 NR 29 37.0 82.1 NR NR NR NR NR 41.2 18.1 NR 

Rayfield 
2020 67±12.7 70.0 NR 29.75 (26.33- 

33.85) 25.9 64.2 NR NR NR 7.0 NR 30.5 15.6 NR 

Wang 2020 64.51±18.3 67.0 39.0 23.44±10.81 27.0 71.0 NR NR NR NR 23.0 25.0 NR NR 
62.45±21.32 69.0 42.0 23.98±6.11 24.0 54.0 NR NR NR NR 19.0 33.0 NR NR 
67.85±10.05 69.0 39.0 24.54±9.52 27.0 73.0 NR NR NR NR 23.0 25.0 NR NR 
67.71±9.88 75.0 42.0 24.7±4.4 24.0 69.0 NR NR NR NR 19.02 33.0 NR NR 

 
Abbreviations: AF: Atrial fibrillation; BMI: Body mass index; CABG: Coronary artery bypass graft; CAD: Coronary artery disease; CVA: 
Cerebrovascular accident; DM: Diabetes mellitus; HLD: Hyperlipidaemia; HTN: Hypertension; LVEF: Left ventricular ejection fraction; MI: 
Myocardial infarction; PCI: Percutaneous coronary intervention; TIA: Transient ischemic attack



 

 
Supplementary Table 5. Additional data on participant baseline characteristics (medications). 

 
Study ANTIPLATELE

TS (%) 
ANTICOAGULAN
TS (%) STATINS (%) ACE INHIBITORS

 / ARBs (%) BETA BLOCKERS (%) CALCIUM CHANNEL 
BLOCKERS (%) 

Al'Aref 2019 NR NR NR NR NR NR 
D'Ascenzo 
2021 

Clopidogrel: 68.4; 
Prasugrel: 11.8; 
Ticagrelor: 16.9 

4.2 80.4 63.5 68.2 NR 

Gao 2020 NR NR NR 56.8 (Training set); 
60.4 (Validation set) 

72.6 (Training set);
 76.6 (Validation 
set) 

NR 

Gurm 2014 NR NR NR NR NR NR 
Huang 2018 NR NR NR NR NR NR 
Kulkarni 2021 Aspirin: 99.1; 

Bivalirudin: 67.4; 
Clopidogrel: 77.5; 
Ticlopidine: 0.3; 
Prasugrel: 10.5; 
Ticagrelor: 14.8 

Fondaparinux: 0.1; 
Low molecular
 weig
ht 
heparin: 8.8; 
Unfractionated 
heparin: 50.1 

NR NR 67.2 21.7 

Kuno 2021 NR NR NR NR NR NR 
Matheny 2007 NR NR NR NR NR NR 
Mortazavi 2019 NR NR NR NR NR NR 
Rayfield 2020 NR NR NR NR NR NR 
Wang 2020 83.6 91 81.9 NR NR NR 

 
Abbreviations: ACE: Angiotensin-Converting Enzyme; ARB: Angiotensin Receptor Blocker; NR: Not Reported



 

Supplementary Table 6. Additional data on participant baseline characteristics (procedure). 
 

Study TIME TO 
REPERFU 
SION 

CULPRIT 
LESION / 
VESSEL 
RELATED 
TO 
INFARCTI 
ON e.g. 
LAD, LCx, 
RCA 

MULTI- 
VESSEL 
DISEASE 
(%) 

NUMBER 
OF 
DISEASED 
VESSELS 
(%) 

PRIORITY 
(ELECTIV 
E/ 
URGENT/ 
EMERGEN 
T/ 
SALVAGE 
ETC.) (%) 

TIMI 
FLOW (%) 

STENOSIS 
MORPHOL 
OGY 

TYPE OF 
STENT e.g. 
Drug- 
eluting, 
Bare metal 

NUMBER 
OF 
STENTS 

LENGTH 
OF 
STENTS 
(mm) 

DIAMETE 
R OF 
STENTS 
(mm) 

ARTERY 
ACCESS 
(RADIAL 
OR 
FEMORAL 
) (%) 

CALCIFIC 
ATION (%) 

FRACTIO 
NAL 
FLOW 
RESERVE, 
INTRAVAS 
CULAR 
ULTRASO 
UND, 
OPTICAL 
COHEREN 
CE TOMOGR APHY (%) 

CHRONIC 
TOTAL 
OCCLUSI 
ONS (%) 

PCI 
WITHOUT 
DILATATI 
ON (%) 

DURATIO 
N OF 
FOLLOW- 
UP 

Al'Aref 2019 NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR 

D'Ascenz o 2021 NR NR 58.2 NR NR NR NR NR NR NR NR NR NR NR NR NR 1 year 

Gao 2020 NR NR NR NR NR 0: 1.5, 1: 1.0, 2: 5.9, 3: 
91.6 
(Training 
set); 0: 1.9, 
1: 1.3, 2: 5.4, 
3: 91.5 
(Validation 
set) 

NR NR NR NR NR NR NR NR NR NR NR 

Gurm 
2014 

NR NR NR NR Elective: 
41.2, Urgent: 
43.0, 
Emergency: 
15.6. 
Salvage: 0.2 
(Training 
cohort); 
Elective: 
41.6, Urgent: 
42.8, 
Emergency: 
15.4, 
Salvage: 0.2 
(Validation 
cohort) 

NR NR NR NR NR NR Femoral: 
89.7; Radial: 
9.9 (Training 
cohort); 
Femoral: 
89.7, Radial: 
9.9 
(Validation 
cohort) 

NR NR NR NR NR 

Huang 
2018 

NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR 

Kulkarni 
2021 

Door to 
balloon time: 
74.5 min; 
Symptom 
action time: 
395.6 min 

Left main 
stem, 
proximal 
LAD, 
mid/distal 
LAD, 
circumflex 
artery, 
ramus, RCA, 
proximal 
LAD graft, 
mid/distal 
LAD graft, 
circumflex 
artery graft, 
RCA graft, ramus graft 

50.5 0: 1.2, 1: 
48.2; 2: 30, 
3: 20.5 

Elective: 
38.4, Urgent: 
47., 
Emergency: 
13., Salvage: 
0.17 

NR NR Drug-eluting 
stents, bare- 
metal stents 

Average 
number of 
DES (n = 
1.45); 
Average 
number of 
BMS (n = 
0.18) 

31.6 Average 
minimum 
stent 
diameter: 
2.87 

NR NR NR NR NR NR 

Kuno 
2021 

NR NR NR NR NR NR NR NR NR NR NR Radial: n = 
7,092, 
Femoral: n = 
7,181 

NR NR NR NR NR 

Matheny 
2007 

NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR 

Mortazav 
i 2019 

NR NR NR NR Elective: 
41.5, Urgent: 
39.9, 
Emergent: 
18.3, Salvage: 0.3 

NR NR NR NR NR NR NR NR NR NR NR NR 

Rayfield 
2020 

NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR 



 

 
Wang 
2020 

NR Left 
coronary artery: 26.0 

NR NR NR NR ACC/AHA TypeB2C: 887 NR 1.71±0.83 49.66±24.92 ≥ 2.5mm: 2047 NR 16.0 13.0 11.0 11.0 NR 

NR Left 
coronary 
artery: 30.0 

NR NR NR NR ACC/AHA 
TypeB2C: 
409 

NR 1.39±0.67 33.16±20.15 ≥ 2.5mm: 2115 NR 7.0 8.0 6.0 13.0 NR 

NR Left 
coronary 
artery:26.0 

NR NR NR NR ACC/AHA 
TypeB2C: 
887 

NR 1.71±0.83  
 49.66±24.92 

≥ 2.5mm: 2047 NR 16.0 13.0 11.0 11.0 NR 

NR Left 
coronary 
artery: 30.0 

NR NR NR NR ACC/AHA 
TypeB2C: 
409 

NR 1.39±0.67 33.16±20.15 ≥ 2.5mm: 2115 NR 7.0 8.0 6.0 13.0 NR 

 
Abbreviations: LAD: Left Anterior Descending; LCx: Left Circumflex; NR: Not Reported; PCI: Percutaneous Coronary Intervention; RCA: 
Right Coronary Artery; TIMI: Thrombolysis in Myocardial Infarction



 

Supplementary Table 7. Quality assessment of included studies. 
 

 Author Al’Aref D’Ascenz
o 

Gao Gurm Huang Kulkarni Kuno Matheny Mortazavi Rayfield Wang 

Question 
Relates To 
Patient 
Benefit? 

Is There A 
Health 
Question 
Relating To 
Patient 
Benefit? 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Target 
Condition 
Applicabilit
y? 

Is There 
Concern That 
The Target 
Condition As 
Defined Does 
Not Match 
The Research 
Question? 

No No No No No No No No No No No 

Data 
Suitable 
For Clinical 
Question? 

Is The Data 
Suitable To 
Answer The 
Clinical 
Question, I.E. 
Does It 
Capture The 
Relevant Real-
World 
Heterogeneity, 
And Is It Of 
Sufficient 
Detail And 
Quality? 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

              



 

Patient 
Applicabilit
y? 

Is There 
Concern That 
The Included 
Patients Do 
Not Match 
The Research 
Question? Y/N 

No No No No No No No No No No No 



 

Patient 
Selection 
Bias? 

Could The 
Selection Of 
Patients Have 
Introduced 
Bias? 

No No The 
exclusion 
criteria were: 
(1) STEMI 
but No 
primary PCI; 
or (2) acute 
non-STEMI 
or unstable 
angina 

Patients who 
underwent 
coronary 
artery bypass 
grafting 
during the 
same 
hospitalizatio
n were 
excluded 
from the 
analysis 
since a post 
–operative 
transfusion 
could Not be 
distinguished 
from post 
PCI 
transfusion. 
The choice 
of vascular 
access, 
procedural 
anticoagulati
on and 
decision to 
transfuse 
was as per 
the operator 
preference 
guided by 
institutional 
policy and 
practice. 

Possibly: 
We 
excluded 
PCIs that 
were Not 
the first 
during a 
single 
hospitalizati
on (n = 
32,999), 
procedures 
with same-
day 
discharge (n 
= 41,570), 
missing 
serum 
creatinine 
before or 
after the 
procedure (n 
= 208,158), 
and 
procedures 
on patients 
already on 
dialysis at 
the time of 
their PCI (n 
= 24,271). T 

Unclear Excluded 
patients 
whose pre- 
and post-
procedural 
creatinine 
and 
haemoglobi
n data were 
missing. 
Although 
creatinine 
levels in 
relatively 
stable 
patients 
were Not 
consistently 
assessed, 
these 
exclusions 
could have 
created a 
bias in our 
results. 

Unclear We only 
included 
the first 
PCI 
procedure 
within the 
same 
episode 
because 
we have 
unique 
coded 
identifiers 
per 
admission 
and 
procedure 
identifiers 
linked to 
this. If a 
patient had 
a second 
PCI in a 
different 
admission, 
we treated 
this as an 
independe
nt 
procedure 
because 
we did Not 
have 
patient 
identifiers. 
We added 
an 
exclusion 
for patients 
who 

The patients 
in the data 
set might 
have skewed 
demographic
s, as they 
were 
predominant
ly white, 
which has 
implications 
with external 
validity. 

Possibly: 
The 
excluded 
criteria as 
follows: 
myocardia
l infarction 
patients or 
elevated 
pre-
procedural 
cardiac 
troponin I 
(cTnI) or 
creatine 
kinase-MB 
fraction 
(CK-MB), 
PCI for 
more than 
one artery, 
coronary 
artery with 
thrombosis
, 
translumin
al 
extraction-
atherectom
y therapy 
for culprit 
artery, 
severe 
heart 
failure (EF 
<45% or 
NT-pro 
BNP >2,0
00), severe 
valve 



 

underwent 
coronary 
artery 
bypass 
grafting 
(CABG) 
because 
the high 
risk of 
bleeding 
after 
CABG 
may 
obscure 
the 
bleeding 
risk 
attributable 
to PCI 
alone; 
these cases 
were Not 
excluded 
in the 
primary 
prior 
model. 

diseases. 

              



 

Algorithm 
Applicabilit
y? 

Is There 
Concern That 
The 
Algorithm, Its 
Conduct, Or 
Interpretation 
Differ From 
The Research 
Question? 

No No No No No No No No No No No 

Bias In 
Algorithm? 
2.1 Were 
Predictors 
Defined 
And 
Assessed In 
A Similar 
Way For 
All 
Participants
? 2.2 Were 
Predictor 
Assessments 
Made 
Without 
KNowledge 
Of Outcome 
Data? 2.3 
Are All 
Predictors 
Available 
At The 
Time The 
Model Is 
Intended To 
Be Used? 

Could The 
Variable 
Selection, 
Predictor 
Selection Or 
Interpretation 
Of The 
Machine 
Learning 
Have 
Introduced 
Bias? 

No No No No No No No No No No No 

              



 

  Treatment Of 
Missing Data 

Multiple 
imputations 
by chained 
equations 

Missing 
data with 
imputatio
n 

Not 
mentioned 

Missing 
predictors 
imputed to 
be the 
overall 
median for 
continuous 
values and 
mode for 
categorical 
variables 

Following 
the same 
strategy 
used in the 
baseline 
model 
developmen
t, missing 
variables 
were 
imputed by 
the most 
common 
value for 
categorical 
variables 
and median 
for 
continuous 
variables 

The 
second 
step 
included 
data pre-
processin
g using 
variable 
encoding. 
We aimed 
to 
maximize 
the 
informatio
n 
contained 
within a 
variable 
and 
therefore 
did Not 
discard 
any 
records 
with 
missing 
values. 
Rather, 
we coded 
all 
missing 
values for 
all 
variables 
as -1 to 
include 
missing 
informatio
n as a 
separate 

No mention 
of missing 
data 

Not stated Simple 
data 
imputation 
strategy 
due to the 
low rate of 
missing 
values in 
the data se 

After the 
entire cohort 
was 
obtained, 
patients were 
removed 
from the 
patient 
cohort if any 
of the 86 
variable data 
points, 
including 
bleeding 
data, were 
missing. 

Mean 
imputation 



 

category 

  Hold-Out= 
Simplest 
Cross-
Validation 
Where The 
Dataset Is 
Split Into A 
'Training' 
And 'Testing' 
Set. 

No Yes No Yes Yes Yes No No No No No 



 

  Leave-One-
Out Cross-
Validation=W
hen Number 
Of Folds 
Equals The 
Number Of 
Instances In 
The Data Set. 

No No No No No No No No No No No 

  N-Fold Cross-
Validation=W
hen The Train 
Dataset Is 
Split Into “N” 
Folds. 

Yes No No No No No No Yes Yes Yes Yes 

  External 
Validation 
Done 

No Yes Yes No Yes No No No No No No 

              
Source And 
Size Of 
External 
Validation 
Dataset 

Randomised 
Controlled 
Trial 

 The best-
performin
g model 
for each 
study 
outcome 
(the 
PRAISE 
score) 
was tested 
in an 
external 
validation 
cohort of 
3444 
patients 
with ACS 
pooled 
from a 
randomise
d 

  Temporally 
validated 
with more 
contemporar
y dataset 

       



 

controlled 
trial and 
three 
prospectiv
e 
registries. 

  Prospective 
Cohort 

No No Yes No No No Yes No No No No 

  Registry Yes No No Yes Yes Yes No No Yes Yes Yes 
  Method Of 

Validation 
5-fold cross 
validation 

20-80 test 
train split 
+ external 
validation 

prospective 
observational 
study 

30:70 split split + 
external 
validation 

25-75 
split 

prospective 
observation
al study 

3-fold 
cross 
validation 

5-fold 
cross 
validation 

10-fold cross 
validation 

 

Size Of 
Validation 
Dataset (N) 

 95961 7409 316 30966 93902 21004 14273 2638 663293 3900 2177 

              



 

Improved 
Outcome 
Prediction 

Is There 
Evidence Of 
Improved 
Risk 
Prediction? 

A boosted 
ensemble 
algorithm 
(AdaBoost) 
had optimal 
discriminati
on with 
AUC of 
0.927 (95% 
CI 0.923–
0.929) 
compared 
with AUC 
of 0.913 for 
XGBoost 
(95% CI 
0.906–
0.919, 
P=0.02), 
AUC of 
0.892 for 
Random 
Forest (95% 
CI 0.889–
0.896, P 

The 
PRAISE 
score 
showed 
an AUC 
of 0·82 
(95% CI 
0·78–
0·85) in 
the 
internal 
validation 
cohort 
and 0·92 
(0·90–
0·93) in 
the 
external 
validation 
cohort for 
1-year all-
cause 
death; an 
AUC of 
0·74 
(0·70–
0·78) in 
the 
internal 
validation 
cohort 
and 0·81 
(0·76–
0·85) in 
the 
external 
validation 
cohort for 
1-year 
myocardia

The 
mortality 
risk 
prediction 
Nomogram 
achieved 
good 
discriminatio
n for in-
hospital 
mortality 
(training set: 
C-
statistic=0.98
7; model 
calibration: 
P=0.722; 
validation 
set: C-
statistic=0.98
4, model 
calibration: 
P=0.669). 
Area under 
the curve 
(AUC) 
values for 
the training 
and 
validation 
sets are 
0.987 (95% 
CI: 0.981–
0.994, 
P=0.003) 
and 0.990 
(95% CI: 
0.987–0.998, 
P=0.007) 

AUC: full 
model = 
0.888 (95% 
CI 0.877–
0.899), 
reduced 
model AUC 
= 0.880 
(95% CI, 
0.868–
0.892), p for 
difference 
0.003, NRI = 
2.77%, p = 
0.007) 

Compared 
with the 
baseline 
model that 
uses 11 
variables, 
the best 
model used 
13 variables 
and 
achieved a 
significantly 
better area 
under the 
receiver 
operating 
characteristi
c curve 
(AUC) of 
0.752 (95% 
confidence 
interval [CI] 
0.749–
0.754) 
versus 0.711 
(95% CI 
0.708–
0.714), a 
significantly 
better Brier 
score of 
0.0617 
(95% CI 
0.0615–
0.0618) 
versus 
0.0636 
(95% CI 
0.0634– 
0.0638), and 

Compared 
to the 
currently 
used 
models 
for AKI, 
bleeding 
and death 
prediction
, our 
models 
showed a 
significant
ly higher 
AUC 
(range 
1.6% – 
5.6%), 
IDI (range 
4.9% – 
7.2%) and 
NRI 
(range 
0.07 – 
0.61). 

Neural 
network 
performed 
similarly to 
logistic reg 

While the 
logistic 
regression 
results in 
this study 
were 
similar to 
those 
found in 
the past 
for this 
clinical 
domain 
[25–
31,47], the 
optimizati
on process 
was 
limited to 
backward 
variable 
selection 
using each 
of the four 
optimizati
on 
methods. 
This 
limitation 
may have 
contribute
d to the 
insensitivi
ty of the 
LR 
models to 
the 
optimizati
on 
processes, 

Logistic 
reg and 
xgradient 
boost, x 
gradient 
boost 
improved 
performan
ce of 
logistic reg 

The AI-BR 
model 
accurately 
predicts 
bleeding 
post and 
accurately 
predicts 
bleeding 
post 

AUC 
moderate, 
group 
which 
dropped 
data 
performed 
best 



 

l 
infarction; 
and an 
AUC of 
0·70 
(0·66–
0·75) in 
the 
internal 
validation 
cohort 
and 0·86 
(0·82–
0·89) in 
the 
external 
validation 
cohort for 
1-year 
major 
bleeding. 

a better 
calibration 
slope of 
observed 
versus 
predicted 
rate of 1.008 
(95% CI 
0.988–
1.028) 
versus 1.036 
(95% CI 
1.015–
1.056). The 
best model 
also had a 
significantly 
wider 
predictive 
range 
(25.3% 
versus 
21.6%, p < 
0.001) and 
was more 
accurate in 
stratifying 
AKI risk for 
patients 

and may 
have 
biased the 
findings 
that SVM 
models 
were 
superior to 
LR 
models 



 

Methods 
Available? 

Are The 
Different 
Parts Of The 
Prediction 
Modelling 
Pipeline 
Available To 
Others To 
Allow For 
Methods 
Reproducibilit
y, Including: 
The Statistical 
Code For 
‘Pre-
Processing’, 
And The 
Modelling 
Workflow 
(Including The 
Methods, 
Parameters, 
Random 
Seeds, Etc. 
Utilised)? 

Yes, code is 
available 

Yes, No 
code 

Yes, No 
code 

No Yes, code 
Not 
available 

Yes, 
pipeline 
clear but 
No code 

No Yes, code 
Not 
available 

Yes, 
pipeline 
clear but 
No code 

Yes, code 
Not 
available 

No 
statistical 
code for 
‘pre-
processing
’, but 
workflow 
is clear 

Metrics 
Clinically 
Relevant? 

Are The 
Reported 
Performance 
Metrics 
Relevant For 
The Clinical 
Context In 
Which The 
Model Will Be 
Used? 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 



 

Interpretabl
e By 
Clinicians? 

Is There 
Evidence That 
Clinicians And 
Patients Find 
The Model 
And Its 
Output 
(Reasonably) 
Interpretable? 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Results 
Clinically 
Justified? 

Is The 
Reported Gain 
In Statistical 
Performance 
With The 
Ml/Ai 
Algorithm 
Clinically 
Justified In 
The Context 
Of Any Trade-
Offs? 

Yes Yes Yes Unclear Yes Unclear Unclear Unclear Yes Yes Unclear 

              
Real World 
Effectivenes
s 

Is There 
Evidence Of 
Real World 
Model 
Effectiveness 
In The 
Proposed 
Clinical 
Setting? 

Yes Yes Yes Yes Yes Yes Unclear Yes Yes Yes Yes 

Cost 
Effectivenes
s 

Is There 
Evidence Of 
Cost 
Effectiveness 
In The 
Proposed 
Clinical 
Setting? 

No No No No No No No No No No No 



 

Supplementary Table 8. Clinical predictors and outcomes involved in the training of different ML models. 
 

Article Clinical predictors and outcomes included in ML models 

Mortazavi 2019 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rayfield 2020 

Demographic 
 
 
 
 
 
 
 

Pre-procedural imaging 

Intervention 

 
 
 
 

Intervention (time-specific) 

Procedural or post- 

procedural complications 

 
 

Outcomes 

Demographic 

Demographic characteristics and medical history: Age (age > 70y, age ≤ 70y), body mass 

index (BMI ≤ 30), chronic lung disease, chronic kidney disease (no, mild, moderate or severe), 

GFR, sex, diabetes (composite, non-insulin treatment, insulin-requiring), currently receiving 

dialysis, NYHA (composite, 1, 2, 3 or 4), history of cerebrovascular disease, history of 

peripheral arterial disease, previous PCI, pre-procedural haemoglobin (Hb ≤ 13g/dL, Hb > 

13g/dL), pre-procedural creatinine 

Pre-procedural TIMI flow grade, pre-procedural LV ejection fraction 

Procedural characteristics: PCI lesion composite (1: Proximal right, mid-LAD, or proximal 

circumflex, 2: Proximal LAD, 3: Left main, 0: Other), proximal LAD PCI, left main PCI, 

vessel disease composite, 2-vessel or 3-vessel disease, lesion complexity, SCAI lesion class, 

CAD presentation, STEMI, stenosis % before treatment) 

PCI status (elective, urgent, emergency or salvage) 

Cardiogenic shock (at start of PCI, within 24h, at start of PCI or within 24h, composite), 

cardiac arrest within 24h, PCI status and shock (composite, 1: Salvage and shock (within 24 h 

and at start of PCI), 2: Salvage or shock (within 24 h and at start of PCI), 3: Shock within 24 h 

or at start of PCI, 4: Emergent procedure, 5: Urgent procedure, 6: Elective procedure), 

subacute stent thrombosis 

In-hospital major bleeding within 72 hours after PCI 



 

  
Age, gender, recent myocardial infarction, presence of cardiogenic shock, presenting 

symptoms, presence of angina, presence of acute coronary artery disease symptoms, presence 

of unstable angina, presence of non-ST segment elevation myocardial infarction, other 

symptoms (respiratory, abdominal, etc), Canadian Cardiovascular Society grading score for 

angina, New York Heart Association classification of congestive heart failure symptoms, 

presence of diabetes, presence of hypertension, body mass index, hyperlipidaemia, family 

history of coronary artery disease, current smoking status, history of prior myocardial 

infarction, prior PCI, prior coronary artery bypass grafting, presence of peripheral arterial 

disease, cerebrovascular disease, dialysis status, history of chronic lung disease, peptic ulcer 

disease, presence of cancer diagnosis, metastatic disease status, cardiac arrest within 24 hours, 

pre-PCI, left ventricular ejection fraction, indication for PCI, presence of shock at the start of 

PCI, thrombolytic administration, diastolic blood pressure, systolic blood pressure, heart rate, 

troponin T level prior to PCI, serum creatinine prior to PCI, glomerular filtration rate, pre-PCI 

haemoglobin, presence of intra-aortic balloon pump, presence of other ventricular support 

devices, access site femoral, access site brachial, access site radial, left main disease >50%, 

proximal left anterior descending artery stenosis ≥70%, middle to distal left anterior 

descending ≥70%, right coronary artery stenosis ≥70%, left circumflex artery stenosis ≥70%, 

right acute marginal artery stenosis ≥70%, number of diseased vessels, PCI performed on 

culprit lesion, PCI performed on non-culprit lesion, PCI of chronic total occlusion performed, 

number of segments treated, number of vessels treated, number of lesions treated, number of 

native lesions treated, worst pre-PCI TIMI flow of treated lesions, any complex lesions treated, 

presence of thrombus in the lesion, any bifurcation lesion treated, worst post-PCI TIMI flow of 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D’Ascenzo 2021 

 
 
 
 
 
 
 
 
Pre-procedural imaging 

Intervention 

Intervention (time-specific) 

Procedural or post- 

procedural complications 

Outcomes 

 
 
 
 
 
 
 
Demographic 

treated lesion, any treated lesion ≤20% post-PCI stenosis, number of bare-metal stents used, 

number of drug-eluting stents used, total number of stents, maximum device diameter (mm), 

left main intervention performed, left anterior descending intervention performed, left 

circumflex intervention performed, right coronary artery intervention performed, use of 

fondaparinux, use of low-molecular-weight heparin, use of unfractionated heparin, use of 

aspirin, use of bivalirudin, use of other direct thrombin inhibitor, use of glycoprotein IIb/IIIa 

inhibitor, use of clopidogrel, use of ticlopidine, use of prasugrel, use of ticagrelor 

Any intravascular ultrasound performed, Any fractional flow reserve performed 

PCI 

NA 

NA 

 
Bleeding within 72h of PCI and prior to hospital discharge. Bleeding was defined according to 

the National Cardiovascular Data Registry (NCDR), which considers retroperitoneal, 

gastrointestinal, genitourinary, and intracranial bleeding, as well as access-site hematoma, as 

bleeding events. 

 
Clinical variables (including age, sex, diabetes, hypertension, hyperlipidaemia, peripheral 

artery disease, estimated glomerular filtration rate, previous myocardial infarction, previous 

percutaneous coronary intervention, previous coronary artery bypass graft, previous stroke, 

previous bleeding, malignancy, ST-segment elevation myocardial infarction presentation, 

haemoglobin, left ventricular ejection fraction), therapeutic variables (including treatment with 



 

 
 
 
 
 
 
 
 
 
 
 
 
Wang 2020 

 
 

Pre-procedural imaging 

Intervention 

Intervention (time-specific) 

Procedural or post- 

procedural complications 

Outcomes 

 
Demographic 

 
 
 
 
 
 
 

Pre-procedural imaging 

Intervention 

 
 
 
 

Intervention (time-specific) 

beta blockers, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, 

statins, oral anticoagulation, and proton pump inhibitors) 

Multivessel disease and complete revascularisation 

Vascular access and percutaneous coronary intervention with drug-eluting stent 

NA 

NA 

1-year all-cause mortality, 1-year re-myocardial infarction, 1-year major bleeding 

General information and history: Gender, Age, BMI, kg/m2, SBP, DBP, UAP (unstable 

angina previously), Hypertension, DM, P-CVD, P-PCI, Smoking, Drinking, F-CVD (family 

history of CVD), Biochemistry results: TC, mmol/L HDL-C, mmol/L LDL-C, mmol/L VLDL- 

C, mmol/L TG, mmol/L LPa, mg/dL TB, μmol/L UB, μmol/L CB, μmol/L UA, μmol/L Cr, 

μmol/L BUN, mmol/L eGFR, mL/min, Blood routine examinations: WBC, ×109 

Lymphocyte, % Neutrophil, % Plt, ×109 MPV, fL CRP, mg/L CKMB, IU FBG, mg/L 

NA 

PCI + Procedure factors: FFR, IVUS, OCT, CTO, ACC/AHA TypeB2C, Left coronary artery, 

Total length of stents, Number of stents, Diameter of stent ≥2.5 mm, Calcification, PCI without 

dilation, Medications: anti-Hyper Med, Statins, anti-Plt Med, Trimetazidine, Fibrates, 

Cilostazol, Warfarin, PPI, Ezetimibe 

NA 

NA 



 

 
 
 
 
 

Gurm 2014 

Procedural or post- 

procedural complications 

Outcomes 

 
 

Demographic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pre-procedural imaging 

Intervention 

Intervention (time-specific) 

 
Periprocedural myocardial infarction (PMI) after PCI *PMI def: [PMI3: cTnI >3-fold upper 

reference limit (URL); PMI5: cTnI >5-fold URL] 

 
History and risk factors (including current smoker (within 1 year), former smoker, 

hypertension, dyslipidaemia, family history of premature coronary artery disease, prior 

myocardial infarction, prior heart failure, prior valve surgery/procedure, prior peripheral artery 

disease, prior percutaneous coronary intervention, prior coronary artery bypass graft, prior 

implantable cardioverter-defibrillator, height, weight, age, currently on dialysis, 

cerebrovascular disease, chronic lung disease, diabetes/diabetes therapy (diet, oral rx, insulin), 

gastro-intestinal bleeding, valve disease, surgery within the prior 7 days, atrial fibrillation, 

cardiac transplant, cardiac arrest), clinical presentation (including pre-operative evaluation 

prior to non-cardiac surgery, cardiogenic shock within 24 hours prior to presentation, cardiac 

arrest within 24 hours prior to presentation, coronary artery disease presentation, angina 

classification within 2 weeks, NYHA class within 2 weeks, exercise stress test results), pre- 

procedural lab values (including creatine kinase-MB, troponin I, troponin T, creatinine, 

haemoglobin) 

Cardiomyopathy/left ventricular systolic dysfunction, stress/imaging study performed, stress 

echo imaging results, cardiac CTA performed, cardiac CTA results, coronary calcium score 

NA 

NA 

NA 



 

 
 
 
 
Kulkarni 2021 

Procedural or post- 

procedural complications 

Outcomes 

 
Demographic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pre-procedural imaging 

 
NA 

 
 

Age, gender, race, body mass index, current smoker, diabetes, hypertension, dyslipidaemia, 

diabetes therapy, chronic lung disease, chronic kidney disease, current dialysis, anaemia, 

family history of CAD, past history of myocardial infarction, past history of heart failure, past 

history of peripheral arterial disease, past history of valve surgery, past history of PCI, past 

history of CABG, past history of cerebrovascular disease, past history of heart failure within 2 

weeks, cardiogenic shock within past 24 hours, cardiac arrest within past 24 hours, NYHA 

class within past 2 weeks, past history of other major surgery, time elapsed since last CABG 

(days), time elapsed since last PCI, time since onset of symptoms, anginal classification within 

2 weeks, cardiomyopathy or LV dysfunction, CAD presentation, insurance (medicare/medicaid 

only or multiple), medications (thrombolytics, anti-anginal - beta-blockers, calcium channel 

blockers, long-acting nitrates, ranolazine, other), laboratory investigations (pre-PCI CKMB, 

pre-PCI TnI, pre-PCI TnT, pre-PCI serum creatinine, pre-PCI haemoglobin), estimated 

glomerular filtration rate 

Stress echocardiogram, SPECT stress test, exercise stress test, stress test with CMR, coronary 

calcium score, calcium score, cardiac CTA, degree of vessel stenosis (left main stem, proximal 

LAD, mid/distal LAD, circumflex artery, ramus, RCA, proximal LAD graft, mid/distal LAD 

graft, circumflex artery graft, RCA graft, ramus graft), dominance (left, right or co-dominant), 

LV ejection fraction, number of diseased vessels, diagnostic catheterisation done, other 

procedure with diagnostic catheterisation, fluoroscopy time, fluoroscopy dose, contrast volume 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gao 2020 

 
Intervention 

 
 
 
 
 
 
 
 

Intervention (time-specific) 

Procedural or post- 

procedural complications 

Outcomes 

 
 

Demographic 

Pre-procedural imaging 
 
 

Intervention 

Intervention (time-specific) 

Procedural or post- 

procedural complications 

Outcomes 

Hospital status (outpatient, outpatient converted to inpatient or inpatient), admit source 

(emergency department, transfer from another acute care facility or other), inpatient for current 

episode, medications (glycoprotein IIb/IIa inhibitors, fondaparinux, low molecular weight 

heparin, unfractionated heparin, aspirin, bivalirudin, clopidogrel, ticlopidine, prasugrel, 

ticagrelor), number of drug-eluting stents, number of bare metal stents, minimum stent 

diameter, total stent length, number of lesions, transradial access, vascular closure advice, 

intra-aortic balloon pump, other mechanical ventricular support 

PCI status (urgent, emergency or salvage), door to balloon time, symptom action time, time of 

PCI start, day of PCI 

Cardiogenic shock at start of PCI 

Acute kidney injury (AKI), bleeding, stroke, death, at least one adverse outcome 
 
 
 

Sex, Killip classification, administration of beta-blocker, ACEi/ARB, CK-MB peak 

Left main coronary artery disease, grading of thrombus, TIMI classification, slow flow, syntax 

score, left ventricular ejection fraction 

Application of IABP 

Symptom-to-door time, symptom-to-balloon time 

NA 

 
In-hospital mortality 



 

Al’Aref 2019 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Matheny 2007 

 
Demographic 

 
 
 
 
 
 
 
 

Pre-procedural imaging 

Intervention 

 
 

Intervention (time-specific) 

Procedural or post- 

procedural complications 

 
 

Outcomes 

Demographic 

Baseline demographics and clinical characteristics (including age, gender, ethnicity body mass 

index, median Canadian Cardiovascular Society class, previous PCI - 1,2, 3 or more, 

cerebrovascular disease, peripheral vascular disease, heart failure, malignant ventricular 

arrhythmia, COPD, diabetes mellitus, renal failure on dialysis, previous CABG, hemodynamic 

stability, ST-segment elevation on ECG, time in days since onset of myocardial 

ischemia/infarction), 

baseline chemistry values (including serum creatinine levels) 

Ejection fraction 

Periprocedural therapy and equipment used, hemodynamic instability, invasive coronary 

angiographic findings (including stenosis severity within coronary vasculature), day of the 

week PCI was performed, and facility type 

Reperfusion time intervals in acute myocardial infarction patients 

Periprocedural complications and outcomes, the occurrence of postprocedural complications 

was defined as the occurrence of stroke, Q-wave myocardial infarction, acute occlusion in the 

target lesion or in a significant side branch, vascular injury at the access site requiring 

intervention, renal failure, emergency cardiac surgery, stent thrombosis, and coronary 

perforation or the need to emergently return to the catheterization laboratory for PCI. 

In-hospital mortality 
 
 

Age, acute heart attack, body mass index, CHF class, CHF on presentation, 
creatinine >2.0mg/dL, diabetes, family history of heart disease, heart rate, history of COPD, 

 
 



 

 
 
 
 
 
 
 
 
 
 
 
Huang 2018 

 
 

Pre-procedural imaging 

Intervention 

Intervention (time-specific) 

Procedural or post- 

procedural complications 

Outcomes 

 
Demographic 

 
 
 
 
 
 
 
 
 
 
 
 
 

Pre-procedural imaging 

history of peripheral vascular disease, history of stroke, hyperlipidaemia, hypertension, prior 

PCI 

NA 

Intra-aortic balloon pump (IABP) 

Elective, emergent or urgent case 

Shock, unstable angina 

 
Post-procedural in-hospital mortality 

 
 

Age, sex, race (White, Black or African American, Asian, American Indian or Alaskan Native, 

Native Hawaiian or Pacific Islander), ethnicity (Hispanic or Latino ethnicity), current/recent 

smoker, hypertension, dyslipidaemia, family history of premature CAD, prior MI, prior heart 

failure, prior valve surgery/procedure, prior PCI, most recent PCI date, prior CABG, most 

recent CABG date, height, weight, cerebrovascular disease, peripheral arterial disease, chronic 

lung disease, diabetes mellitus, diabetes therapy, CAD presentation, anginal classification 

within 2 weeks, anti-anginal medication within 2 weeks, beta blockers, calcium channel 

blockers, long-acting nitrates, ranolazine, other anti-anginal agent, heart failure within 2 weeks, 

cardiomyopathy or left ventricular systolic function, NYHA class within 2 weeks, pre- 

procedure creatinine, pre-procedure GFR, pre-procedure haemoglobin 

Stress or imaging studies (i.e. if an exercise stress test, stress echocardiogram, stress testing 

with SPECT MPI, stress testing with CMR, cardiac CTA or coronary calcium scoring was 

performed), pre-PCI left ventricular ejection fraction 



 

 
 
 
 
 
 
 
 
 
 
 
Kuno 2021 

 
Intervention 

 
 

Intervention (time-specific) 
 
 

Procedural or post- 

procedural complications 

Outcomes 

 
Demographic 

 
 
 
 
 
 

Pre-procedural imaging 

Intervention 

Intervention (time-specific) 

Procedural or post- 

procedural complications 

Outcomes 

Admit source (emergency department, transfer in from another acute care facility or other), 

thrombolytics, IABP, other mechanical ventricular support 

PCI status (elective, urgent, emergency or salvage), IABP timing, other mechanical ventricular 

support timing 

Cardiogenic shock within 24 hours, cardiac arrest within 24 hours, 

Acute kidney injury (AKI) 

 
Age, chronic kidney disease, previous heart failure, diabetes mellitus, cerebrovascular disease, 

heart failure at admission, cardiogenic shock at admission, cardiopulmonary arrest at 

admission, ST elevation myocardial infarction, non-ST elevation myocardial 

infarction/unstable angina, pre-procedural haemoglobin (<10g/dL), >3g/dL decrease in 

haemoglobin level versus relative decrease of 20% in haemoglobin 

NA 

Use of intra-aortic balloon bump 

NA 

NA 
 
 

Acute kidney injury (AKI) 

 
 
 
 

 



 

 

Section/topic # Checklist item Reported 
on page # 

TITLE  
Title 1 Identify the report as a systematic review, meta-analysis, or both. 1 
ABSTRACT  
Abstract 2 PRISMA 2020 Abstract checklist: 

● Identify the report as a systematic review. 
● Provide an explicit statement of the main objective(s) or question(s) the review addresses. 
● Specify the inclusion and exclusion criteria for the review. 
● Specify the information sources (e.g. databases, registers) used to identify studies and the date 

when each was last searched. 
● Specify the methods used to assess risk of bias in the included studies. 
● Specify the methods used to present and synthesise results. 
● Give the total number of included studies and participants and summarise relevant characteristics 

of studies. 
● Present results for main outcomes, preferably indicating the number of included studies and 

participants for each. If meta-analysis was done, report the summary estimate and 
confidence/credible interval. If comparing groups, indicate the direction of the effect (i.e. which 
group is favoured). 

● Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk 
of bias, inconsistency and imprecision). 

● Provide a general interpretation of the results and important implications. 
● Specify the primary source of funding for the review. 
● Provide the register name and registration number. 

3-4 

INTRODUCTION  



 

 
Rationale 3 Describe the rationale for the review in the context of existing knowledge. 6-7 
Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. 6-7 

METHODS  
Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 7-8 

Information sources 6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or 
consulted to identify studies. Specify the date when each source was last searched or consulted. 

7 

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits 
used. 

7 

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how 
many reviewers screened each record and each report retrieved, whether they worked independently, and if 
applicable, details of automation tools used in the process. 

7-8 

Data collection process 9 Specify the methods used to collect data from reports, including how many reviewers collected data from 
each report, whether they worked independently, any processes for obtaining or confirming data from study 
investigators, and if applicable, details of automation tools used in the process. 

8-9 

Data items 10 List and define all outcomes for which data were sought. Specify whether all results that were compatible 
with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if 
not, the methods used to decide which results to collect. 

 
List and define all other variables for which data were sought (e.g. participant and intervention 
characteristics, funding sources). Describe any assumptions made about any missing or unclear 
information. 

8-9 

Study risk of bias 
assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, 
how many reviewers assessed each study and whether they worked independently, and if applicable, details 
of automation tools used in the process. 

9-10 

Effect measures 12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or 
presentation of results. 

9 



 

 
Synthesis methods 13 Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the 

study intervention characteristics and comparing against the planned groups for each synthesis 
 
Describe any methods required to prepare the data for presentation or synthesis, such as handling of 
missing summary statistics, or data conversions. 

 
Describe any methods used to tabulate or visually display results of individual studies and syntheses. 

 
Describe any methods used to synthesise results and provide a rationale for the choice(s). If meta-analysis 
was performed, describe the model(s), method(s) to identify the presence and extent of statistical 
heterogeneity, and software package(s) used. 

 
Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup 
analysis, meta-regression). 

 
Describe any sensitivity analyses conducted to assess robustness of the synthesised results. 

9-10 

Reporting bias assessment 14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from 
reporting biases). 

NIL 

Certainty assessment 15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. NIL 

 
RESULTS  
Study selection 16 Describe the results of the search and selection process, from the number of records identified in the search 

to the number of studies included in the review, ideally using a flow diagram 
 
Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why 
they were excluded. 

11 

Study characteristics 17 Cite each included study and present its characteristics. 11-12 



 

 
Risk of bias in studies 18 Present assessments of risk of bias for each included study. NIL 
Results of individual 
studies 

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) 
an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or 
plots. 

11-12 

Results of syntheses 20 For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. 
 
Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the 
summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical 
heterogeneity. If comparing groups, describe the direction of the effect. 

 
Present results of all investigations of possible causes of heterogeneity among study results. 

 
Present results of all sensitivity analyses conducted to assess the robustness of the synthesised results. 

11-12 

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis 
assessed. 

NIL 

Certainty of evidence 22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. 11-12 
DISCUSSION  
Discussion 23 Provide a general interpretation of the results in the context of other evidence. 

Discuss any limitations of the evidence included in the review. 

Discuss any limitations of the review processes used. 
 
Discuss implications of the results for practice, policy, and future research. 

13-19 

OTHER INFORMATION  
Registration and protocol 24 Provide registration information for the review, including register name and registration number, or state 

that the review was not registered. 
7 



 

 
  Indicate where the review protocol can be accessed, or state that a protocol was not prepared. 

Describe and explain any amendments to information provided at registration or in the protocol. 

 

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or 
sponsors in the review. 

21 

Competing interest 26 Declare any competing interests of review authors. 21 

Availability of data, code, 
and other materials 

27 Report which of the following are publicly available and where they can be found: template data collection 
forms; data extracted from included studies; data used for all analyses; analytic code; any other materials 
used in the review. 

21 

 
Supplementary Figure 1. PRISMA 2020 checklist. 
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